5 research outputs found

    Low in‑hospital mortality rate in patients with COVID‑19 receiving thromboprophylaxis: data from the multicentre observational START‑COVID Register

    Get PDF
    Abstract COVID-19 infection causes respiratory pathology with severe interstitial pneumonia and extra-pulmonary complications; in particular, it may predispose to thromboembolic disease. The current guidelines recommend the use of thromboprophylaxis in patients with COVID-19, however, the optimal heparin dosage treatment is not well-established. We conducted a multicentre, Italian, retrospective, observational study on COVID-19 patients admitted to ordinary wards, to describe clinical characteristic of patients at admission, bleeding and thrombotic events occurring during hospital stay. The strategies used for thromboprophylaxis and its role on patient outcome were, also, described. 1091 patients hospitalized were included in the START-COVID-19 Register. During hospital stay, 769 (70.7%) patients were treated with antithrombotic drugs: low molecular weight heparin (the great majority enoxaparin), fondaparinux, or unfractioned heparin. These patients were more frequently affected by comorbidities, such as hypertension, atrial fibrillation, previous thromboembolism, neurological disease,and cancer with respect to patients who did not receive thromboprophylaxis. During hospital stay, 1.2% patients had a major bleeding event. All patients were treated with antithrombotic drugs; 5.4%, had venous thromboembolism [30.5% deep vein thrombosis (DVT), 66.1% pulmonary embolism (PE), and 3.4% patients had DVT + PE]. In our cohort the mortality rate was 18.3%. Heparin use was independently associated with survival in patients aged ≄ 59 years at multivariable analysis. We confirmed the high mortality rate of COVID-19 in hospitalized patients in ordinary wards. Treatment with antithrombotic drugs is significantly associated with a reduction of mortality rates especially in patients older than 59 years

    Enhanced Vascular Biocompatibility and Remodeling of Decellularized and Secured Xenogeneic/Allogeneic Matrices in a Porcine Model.

    No full text
    Calcifications and absence of growth potential are the major drawbacks of glutaraldehyde-treated prosthesis. Decellularized and secured xeno-/allogeneic matrices were assessed in a preclinical porcine model for biocompatibility and vascular remodeling in comparison to glutaraldehyde-fixed bovine pericardium (GBP; control). Native human (fascia lata, pericardium) and porcine tissues (peritoneum) were used and treated. In vitro, biopsies were performed before and after treatment to assess decellularization (hematoxylin and eosin/DAPI). In vivo, each decellularized and control tissue sample was implanted subcutaneously in 4 mini-pigs. In addition, 9 mini-pigs received a patch or a tubularized prosthesis interposition on the carotid artery or abdominal aorta of decellularized (D) human fascia lata (DHFL; n = 4), human pericardium (DHP; n = 9), porcine peritoneum (DPPt; n = 7), and control tissue (GBP: n = 3). Arteries were harvested after 1 month and subcutaneous samples after 15-30 days. Tissues were processed for hematoxylin and eosin/von Kossa staining and immunohistochemistry for CD31, alpha-smooth muscle actin, CD3, and CD68. Histomorphometry was achieved by point counting. A 95% decellularization was confirmed for DHP and DPPt, and to a lower degree for DHFL. In the subcutaneous protocol, CD3 infiltration was significantly higher at day 30 in GBP and DHFL, and CD68 infiltration was significantly higher for GBP (p < 0.05). In intravascular study, no deaths, aneurysms, or pseudoaneurysms were observed. Inflammatory reaction was significantly higher for DHFL and GBP (p < 0.05), while it was lower and comparable for DHP/DPPt. DHP and DPPt showed deeper recellularization, and a new arterial wall was characterized. In a preclinical model, DPPt and DHP offered better results than conventional commercialized GBP for biocompatibility and vascular remodeling

    Decellularized and Secured Porcine Arteries with NaOH-based Process: Proof of Concept.

    No full text
    BACKGROUND: There is a need for small caliber vascular prosthesis. Synthetic grafts are hindered by thrombogenicity and rapid occlusion. Decellularized matrices could be an alternative. We assessed in vitro and in vivo the biocompatibility of porcine artery treated with a chemical/physical process for decellularization and graft securitization with non/conventional pathogens inactivation. METHODS: Porcine carotid arteries (PCA) were treated. First, biopsies (n = 4/tissue) were performed before/after treatment to assess decellularization (hematoxylin and eosin/-4',6-diamidino-2-phenylindole/DNA/Miller). Second, 5 rats received an abdominal aortic patch of decellularized PCA (DPCA). Four pigs received subcutaneous DPCA implants (n = 2/pig). Half were explanted at day 15 and half at day 30. Finally, 2 pigs received DPCA (n = 2) and polytetrafluoroethylene prosthesis (n = 1), respectively, as carotid interposition. Implants were removed at day 30. Inflammation (CD3 and CD68 immunostaining) calcifications (von Kossa staining), remodeling (hematoxylin and eosin), and vascular characterization (CD31 and alpha-smooth muscle actin immunofluorescent staining) were investigated. RESULTS: Ninety-five percentage of decellularization was obtained without structural deterioration. No death occurred. Low inflammatory reaction was found in the 2 models for DPCA. Acquisition of vascular identity was confirmed in the rodent and porcine models. Similarity between native PCA and DPCA was observed after 30 days. In contrast, polytetrafluoroethylene graft showed severe calcifications, higher CD3 reaction, and higher intimal hyperplasia (P < 0.05). CONCLUSIONS: The physical and chemical process ensures decellularization of carotid porcine arteries and their in vivo remodeling with the presence of an endothelium and smooth-muscle-like cells as well as a low level of inflammatory cells
    corecore