64 research outputs found

    The GL

    Get PDF
    After defining a meanfield by arithmetic means, using multiplicative characters of finite fields, its Potts Hamiltonian is exactly computed. Moreover, it proves to be invariant with respect to every change of basis in Fq over the prime field Fp

    Diffusive Charge Transport in Graphene on SiO2

    Full text link
    We review our recent work on the physical mechanisms limiting the mobility of graphene on SiO2. We have used intentional addition of charged scattering impurities and systematic variation of the dielectric environment to differentiate the effects of charged impurities and short-range scatterers. The results show that charged impurities indeed lead to a conductivity linear in density in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates [1]; increased dielectric screening reduces scattering from charged impurities, but increases scattering from short-range scatterers [2]. We evaluate the effects of the corrugations (ripples) of graphene on SiO2 on transport by measuring the height-height correlation function. The results show that the corrugations cannot mimic long-range (charged impurity) scattering effects, and have too small an amplitude-to-wavelength ratio to significantly affect the observed mobility via short-range scattering [3, 4]. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a resistivity linear in temperature and independent of carrier density [5]; at higher temperatures, polar optical phonons of the SiO2 substrate give rise to an activated, carrier density-dependent resistivity [5]. Together the results paint a complete picture of charge carrier transport in graphene on SiO2 in the diffusive regime.Comment: 28 pages, 7 figures, submitted to Graphene Week proceeding

    Effect of charged impurity correlation on transport in monolayer and bilayer graphene

    Full text link
    We study both monolayer and bilayer graphene transport properties taking into account the presence of correlations in the spatial distribution of charged impurities. In particular we find that the experimentally observed sublinear scaling of the graphene conductivity can be naturally explained as arising from impurity correlation effects in the Coulomb disorder, with no need to assume the presence of short-range scattering centers in addition to charged impurities. We find that also in bilayer graphene correlations among impurities induce a crossover of the scaling of the conductivity at higher carrier densities. We show that in the presence of correlation among charged impurities the conductivity depends nonlinearly on the impurity density nin_i and can even increase with nin_i.Comment: 11 pages, 10 figures. arXiv admin note: text overlap with arXiv:1104.066

    The surface science of quasicrystals

    Get PDF
    The surfaces of quasicrystals have been extensively studied since about 1990. In this paper we review work on the structure and morphology of clean surfaces, and their electronic and phonon structure. We also describe progress in adsorption and epitaxy studies. The paper is illustrated throughout with examples from the literature. We offer some reflections on the wider impact of this body of work and anticipate areas for future development. (Some figures in this article are in colour only in the electronic version

    Formation of atomic nanoclusters on graphene sheets

    Full text link
    The formation of atomic nanoclusters on suspended graphene sheets have been investigated by employing a Molecular dynamics simulation at finite temperature. Our systematic study is based on temperature dependent Molecular dynamics simulations of some transition and alkali atoms on suspended graphene sheets. We find that the transition atoms aggregate and make various size nanoclusters distributed randomly on graphene surface. We also report that most alkali atoms make one atomic layer on graphene sheets. Interestingly, the potassium atoms almost deposit regularly on the surface at low temperature. We expect from this behavior that the electrical conductivity of a suspended graphene doped by potassium atoms would be much higher than the case doped by the other atoms at low temperature.Comment: High quality figures can be requested to the author

    Transition metals on the (0001) surface of graphite: Fundamental aspects of adsorption, diffusion, and morphology

    Get PDF
    In this article, we review basic information about the interaction of transition metal atoms with the (0001) surface of graphite, especially fundamental phenomena related to growth. Those phenomena involve adatom-surface bonding, diffusion, morphology of metal clusters, interactions with steps and sputter-induced defects, condensation, and desorption. General traits emerge which have not been summarized previously. Some of these features are rather surprising when compared with metal-on-metal adsorption and growth. Opportunities for future work are pointed out
    • …
    corecore