512 research outputs found

    First Records of Megachile apicalis (Hymenoptera: Megachilidae) for Illinois Found in Heavily Urbanized Areas within the City of Chicago

    Get PDF
    We provide the first record of the non-native Megachile apicalis Spinola (Hymenoptera: Megachilidae) in Illinois. Thirty Megachile apicalis specimens were collected in the summer of 2018 in a highly urban area of Chicago, IL, USA. Our findings suggest that the range of Megachile apicalis appears to be rapidly expanding across North America, inward from both the East and Western Coasts. Megachile apicalis in Chicago has a broad activity period, can take advantage of abundant non-native floral food resources, and has competitive nesting behavior, all of which may facilitate its successful establishment in disturbed urban environments, as well as its continued spread across North America

    Cysteine Residues Contribute to the Dimerization and Enzymatic Activity of Human Nuclear dUTP Nucleotidohydrolase (nDut).

    Get PDF
    dUTPase is an enzyme found in all organisms that have thymine as a constituent of DNA. Through evolution, humans have two major isoforms of dUTPase: a mitochondrial (mDut) and a nuclear (nDut) isoform. The nuclear isoform of dUTPase is a 164-amino-acids-long protein containing three cysteine residues. nDut\u27s starting methionine is post-translationally cleaved, leaving four unique amino acids on its amino-terminus including one cysteine residue (C3). These are not present in the mitochondrial isoform (mDut). Using mass spectrometry analyses of recombinant dUTPase constructs, we have discovered an intermolecular disulfide bridge between cysteine-3 of each nDut monomer. We have found that these two residues stabilize a dimer configuration that is unique to the nDut isoform. We have also uncovered an intramolecular disulfide linkage between cysteine residues C78 and C134, stabilizing the monomeric state of the protein. Of note, both disulfide linkages are essential for nDut\u27s enzymatic activity and dimeric formation can be augmented by the addition of the oxidizing agent, hydrogen peroxide to cells. Analyses of endogenous cellular dUTPase proteins confirm these differences between the two isoforms. We observed that mDut appears to be a mixture of monomer, dimer, and trimer conformations, as well as higher-order subunit interactions. In contrast, nDut appeared to exist only in monomeric and dimeric forms. Cysteine-based redox switches have recently emerged as a distinct class of post-translational modification. In light of this and our results, we propose that nDut possesses a redox switch whereby cysteine interactions regulate nDut\u27s dUTP-hydrolyzing activity

    Terrestrial laser scanning for 3D archaeological documentation. the prehistoric Cave of Sa Miniera de Santu Josi (Sardinia, Italy)

    Get PDF
    Caves have a great archaeological importance: they were used as a dwelling, as a shelter of animals, as an occasional refuge both for funerary and religious purposes. A cave survey is the first step towards their exploration. This study describes the San Giorgio cave’s survey that is the object of an archaeological research that concerns both the area above it and the underground environments. The cave, located in the north-west of Sardinia, has an extension of about 140 meters and has a maximum depth (surveyed) of -15 meters. Sixty-two TLS scans were carried out producing 1.5 milliard points. The Poisson surface reconstruction algorithm [3] is used to produce the 3D Model. A 3D model in low resolution can be adopted for aims of public archaeology; however archaeologists should take advantage of all the information available in the original point cloud

    Analysis of model rotor blade pressures during parallel interaction with twin vortices

    Get PDF
    This paper presents and provides analysis of unsteady surface pressures measured on a model rotor blade as the blade experienced near parallel blade vortex interaction with a twin vortex system. To provide a basis for analysis, the vortex system was characterized by hot-wire measurements made in the interaction plane but in the absence of the rotor. The unsteady pressure response resulting from a single vortex interaction is then presented to provide a frame of reference for the twin vortex results. A series of twin vortex interaction cases are then presented and analyzed. It is shown that the unsteady blade pressures and forces are very sensitive to the inclination angle and separation distance of the vortex pair. When the vortex cores lie almost parallel to the blade chord, the interaction is characterized by a two-stage response associated with the sequential passage of the two cores. Conversely, when the cores lie on a plane that is almost perpendicular to the blade chord, the response is similar to that of a single vortex interaction. In all cases, the normal force response is consistent with the distribution of vertical velocity in the flow field of the vortex system. The pitching moment response, on the other hand, depends on the localized suction associated with the vortex cores as they traverse the blade chord

    Can Early Life Exposure to Permethrin lead to intergenerational effects?

    Get PDF
    Pesticides are largely used in agriculture against pests and consequently are present in fruits and vegetables. The wide presence of pesticide residues in breast milk underline the risk for the population, focalizing the long-term consequence of early life pyrethroid exposure. The significant presence of pyrethroid metabolites in the urine of population over the world confirms that their presence in food is a global problem. It has been demonstrated that there is a correlation between the environmental exposure to pesticides and the development of neurodegenerative diseases. Neonatal exposure to Permethrin (PERM), a member of the family of synthetic pyrethroids, can induce neurodegeneration (i.e. Parkinson’s –like disease) and it can cause some alterations in striatum of rats, involving both genetic and epigenetic pathways. The aim of this study was to evaluate if the rat offspring (F1 generation) exposed to a low dose of PERM from postnatal day 6 to 21, presents alterations in Nurr1 gene expression as previously observed in early life permethrin treated male rats. Moreover, global DNA methylation was analyzed in untreated early life exposed mothers and offspring (F1 generation). Methods Through Nurr1gene expression analysis and global DNA methylation assessment in both PERM-treated parents and their untreated offspring, we investigated on the prospective intergenerational effect of this pesticide. Results 33% of progeny presents the same Nurr1 alteration as rats exposed to permethrin in early life. A decrease in global genome-wide DNA methylation was measured in mothers exposed in early life to permethrin as well as in their offspring, whereas untreated rats have a hypermethylated genomic DNA. Conclutions Intergenerational PERM-induced damage on progenies has been identified for the first time. On the light of these results, pesticide residues in the food could represent a risk factor for the health of children especially in early life when the brain is still in the developing phase. Further studies are needed to elucidate the molecular mechanisms associated with the damage

    Chemical Profile and Biological Activity of Cherimoya (Annona cherimola Mill.) and Atemoya (Annona atemoya) Leaves

    Get PDF
    Annona cherimola (Cherimoya) and Annona atemoya (Atemoya) are tropical plants known for their edible fruit. Scientific data suggest that their leaves, used in traditional medicine in the form of teas or infusions without evidence of toxicity, contain several bioactive compounds. However, only Annona muricata among all the Annona species is currently used in the nutraceutical field, and its dried leaves are marketed for tea preparation. In this work, we explored the nutraceutical potential of Atemoya and Cherimoya leaves, by evaluating their chemical profile and functional properties. Phytochemical analyses showed large amounts of phenolic compounds, in particular proanthocyanidins, and identified 18 compounds, either flavonoids or alkaloids. Concerning biological activity, we found antioxidative properties correlated with polyphenols, and antiproliferative activity against HeLa and HepG2 cell lines correlated with alkaloids. The obtained results demonstrate the potential use of Annona cherimola leaves for the preparation of dietary supplements aimed to promote the physiological redox balance. Moreover, the varietal comparison suggests that two commercial cultivars (Campas and White) and the local Torre 1, better suit this purpose. On the other hand, among the studied cultivars, Campas and Torre 1 are also the richest in alkaloids and, in consideration of the anti-proliferative properties of their extracts, dietary supplements based on these cultivars might also have chemo-preventive effects

    Chemical profile and biological activity of cherimoya (Annona cherimola Mill.) and atemoya (Annona atemoya) leaves

    Get PDF
    Annona cherimola (Cherimoya) and Annona atemoya (Atemoya) are tropical plants known for their edible fruit. Scientific data suggest that their leaves, used in traditional medicine in the form of teas or infusions without evidence of toxicity, contain several bioactive compounds. However, only Annona muricata among all the Annona species is currently used in the nutraceutical field, and its dried leaves are marketed for tea preparation. In this work, we explored the nutraceutical potential of Atemoya and Cherimoya leaves, by evaluating their chemical profile and functional properties. Phytochemical analyses showed large amounts of phenolic compounds, in particular proanthocyanidins, and identified 18 compounds, either flavonoids or alkaloids. Concerning biological activity, we found antioxidative properties correlated with polyphenols, and antiproliferative activity against HeLa and HepG2 cell lines correlated with alkaloids. The obtained results demonstrate the potential use of Annona cherimola leaves for the preparation of dietary supplements aimed to promote the physiological redox balance. Moreover, the varietal comparison suggests that two commercial cultivars (Campas and White) and the local Torre 1, better suit this purpose. On the other hand, among the studied cultivars, Campas and Torre 1 are also the richest in alkaloids and, in consideration of the anti-proliferative properties of their extracts, dietary supplements based on these cultivars might also have chemo-preventive effects

    Persistent dysregulation of DNA methylation in cells with arsenic-induced genomic instability

    Get PDF
    The mechanisms by which arsenic-induced genomic instability is initiated and maintained are poorly understood. In previous studies long-term progression of chromosomal instability was typified by increasing aneuploidy in Chinese hamster V79 and human keratinocyte cells treated with arsenite for a 24 hr exposure period followed by growth in arsenic-free medium for 40-120 cell generations. In the current study the role of progressive DNA methylation changes was evaluated in long-term cell cultures after brief arsenite treatments as above. We have found altered genomic methylation patterns in cells that were briefly exposed to arsenic with evidence for widespread dysregulation of CpG methylation that persists for many population doublings after the treatment. In V79 cell populations, progressive aneuploidy increases were notable by 50 cell generations after a 24 hr exposure to 1-10 uM arsenite. Dicentric chromosomes and/or telomeric associations, as well as complex chromosome rearrangements, occurred by 90 cells generations post treatment; and mutator and transformed phenotypes began to appear thereafter. This increasing genomic instability correlated with modifications of global DNA methylation patterns in V79 cells evaluated by 5-methylcytosine antibody binding and MeSAP-PCR. The results show that short-term exposure to arsenite induced an apparent genome hypomethylating effect within a short time after exposure. In identical protocols using human HaCaT keratinocytes exposed to low doses of arsenite (0.05-0.1 M) for 24 hr, genomewide methylation levels were measured by LINE1 pyrosequencing and gene-specific methylation status was assessed by Methylation-Specific-PCR for up to 40 generations post exposure. Global demethylation following treatment was supported by preliminary LINE-1 studies. Moreover, the study of gene-specific MSP and determination of expression levels by RT-PCR of several genes (p16, hMLH1, hMSH2, DNMT1, DNMT3a and DNMT3b) demonstrated that hMSH2 gene was epigenetically regulated by arsenite and that down regulation of DNMT3a and DNMT3b genes occurred in an arsenite dose-dependent manner. The results reported here demonstrate that acute 24 hr arsenic exposure promptly induces genome wide DNA hypomethylation, and support the hypothesis that the cells continue to undergo epigenetic reprogramming both at the gene and genomic levels in the absence of further arsenite treatment; thus likely contributing to long-lasting genomic instability that manifests as aberrant chromosomal, mutator and cell transformation effects

    (2-Aminobenzothiazole)-Methyl-1,1-bisphosphonic acids: Targeting matrix metalloproteinase 13 inhibition to the bone

    Get PDF
    Matrix Metalloproteinases (MMPs) are a family of secreted and membrane-bound enzymes, of which 24 isoforms are known in humans. These enzymes degrade the proteins of the extracellular matrix and play a role of utmost importance in the physiological remodeling of all tissues. However, certain MMPs, such as MMP-2, -9, and -13, can be overexpressed in pathological states, including cancer and metastasis. Consequently, the development of MMP inhibitors (MMPIs) has been explored for a long time as a strategy to prevent and hinder metastatic growth, but the important side effects linked to promiscuous inhibition of MMPs prevented the clinical use of MMPIs. Therefore, several strategies were proposed to improve the therapeutic profile of this pharmaceutical class, including improved selectivity toward specific MMP isoforms and targeting of specific organs and tissues. Combining both approaches, we conducted the synthesis and preliminary biological evaluation of a series of (2-aminobenzothiazole)-methyl-1,1-bisphosphonic acids active as selective inhibitors of MMP-13 via in vitro and in silico studies, which could prove useful for the treatment of bone metastases thanks to the bone-targeting capabilities granted by the bisphosphonic acid group

    Pro-apoptotic activity of the phytochemical Indicaxanthin on colorectal carcinoma cells (Caco-2) and epigenetic CpG demethylation of the promoter and reactivation of the expression of p16

    Get PDF
    Phytochemicals play prominent roles in human diet and nutrition as protective redo-active substances in prevention of several disorders and chronic diseases in humans. Today, their function as potent modulators of the mammalian epigenome-regulated gene expression is rapidly emerging. In the present study antiproliferative effects of Indicaxanthin (Ind) from the fruits of Opuntia ficus-indica (1), and potential influence on DNA methylation has been investigated on Caco-2 cells, a human cell line of colorectal carcinoma. Ind caused a clear dose- and time-dependent decrease of the cell proliferation (IC(50) 50 M) associated to apoptosis as demonstrated by phosphatidylserine externalization and depolarization of mithocondrial membrane. Ind decreased the Go-G1phase whereas increased S and G2-M phases of the cell cycle. The phytochemical did not altered the intracellular ROS levels but decreased the [Ca2+]i. Investigation on DNA methylation using MESAP-PCR (Methylation-Sensitive Arbitrarily-Primed Polymerase Chain Reaction) (2), showed that 100 M Ind induced a slight global demethylation after a 48 h treatment. Analysis of epigenetic changes in the DNA methylation pattern at CpG promoter of p16 (INK4a), using MSRE (Methylation-Sensitive Restriction Endonucleases Multiplex-Polymerase Chain Reaction), showed that Ind caused CpG demethylation. Western blotting analysis carried out with p16 monoclonal antibody, confirmed the reactivation of the protein expression. Present data, suggesting that a long-term exposure to indicaxanthin in diet might potentially affect epigenetic machines of the intestinal cells, preventing or repairing initial derangements/disorders, encourage studies on the mechanism involved
    • 

    corecore