1,704 research outputs found

    Four-loop contributions to long-distance quantities in the two-dimensional nonlinear sigma-model on a square lattice: revised numerical estimates

    Full text link
    We give the correct analytic expression of a finite integral appearing in the four-loop computation of the renormalization-group functions for the two-dimensional nonlinear sigma-model on the square lattice with standard action, explaining the origin of a numerical discrepancy. We revise the numerical expressions of Caracciolo and Pelissetto for the perturbative corrections of the susceptibility and of the correlation length. For the values used in Monte Carlo simulations, N=3, 4, 8, the second perturbative correction coefficient of the correlation length varies by 3%, 4%, 3% respectively. Other quantities vary similarly.Comment: 2 pages, Revtex, no figure

    Plastic number and possible optimal solutions for an Euclidean 2-matching in one dimension

    Full text link
    In this work we consider the problem of finding the minimum-weight loop cover of an undirected graph. This combinatorial optimization problem is called 2-matching and can be seen as a relaxation of the traveling salesman problem since one does not have the unique loop condition. We consider this problem both on the complete bipartite and complete graph embedded in a one dimensional interval, the weights being chosen as a convex function of the Euclidean distance between each couple of points. Randomness is introduced throwing independently and uniformly the points in space. We derive the average optimal cost in the limit of large number of points. We prove that the possible solutions are characterized by the presence of "shoelace" loops containing 2 or 3 points of each type in the complete bipartite case, and 3, 4 or 5 points in the complete one. This gives rise to an exponential number of possible solutions scaling as p^N , where p is the plastic constant. This is at variance to what happens in the previously studied one-dimensional models such as the matching and the traveling salesman problem, where for every instance of the disorder there is only one possible solution.Comment: 19 pages, 5 figure

    Gauged O(n) spin models in one dimension

    Get PDF
    We consider a gauged O(n) spin model, n >= 2, in one dimension which contains both the pure O(n) and RP(n-1) models and which interpolates between them. We show that this model is equivalent to the non-interacting sum of the O(n) and Ising models. We derive the mass spectrum that scales in the continuum limit, and demonstrate that there are two universality classes, one of which contains the O(n) and RP(n-1) models and the other which has a tuneable parameter but which is degenerate in the sense that it arises from the direct sum of the O(n) and Ising models.Comment: 9 pages, no figures, LaTeX sourc

    Exact value for the average optimal cost of bipartite traveling-salesman and 2-factor problems in two dimensions

    Get PDF
    We show that the average cost for the traveling-salesman problem in two dimensions, which is the archetypal problem in combinatorial optimization, in the bipartite case, is simply related to the average cost of the assignment problem with the same Euclidean, increasing, convex weights. In this way we extend a result already known in one dimension where exact solutions are avalaible. The recently determined average cost for the assignment when the cost function is the square of the distance between the points provides therefore an exact prediction EN=1πlogN\overline{E_N} = \frac{1}{\pi}\, \log N for large number of points 2N2N. As a byproduct of our analysis also the loop covering problem has the same optimal average cost. We also explain why this result cannot be extended at higher dimensions. We numerically check the exact predictions.Comment: 5 pages, 3 figure

    On the question of universality in \RPn and \On Lattice Sigma Models

    Get PDF
    We argue that there is no essential violation of universality in the continuum limit of mixed \RPn and \On lattice sigma models in 2 dimensions, contrary to opposite claims in the literature.Comment: 16 pages (latex) + 3 figures (Postscript), uuencode

    The extended conformal theory of the Calogero-Sutherland model

    Get PDF
    We describe the recently introduced method of Algebraic Bosonization of (1+1)-dimensional fermionic systems by discussing the specific case of the Calogero-Sutherland model. A comparison with the Bethe Ansatz results is also presented.Comment: 12 pages, plain LaTeX, no figures; To appear in the proceedings of the IV Meeting "Common Trends in Condensed Matter and High Energy Physics", Chia Laguna, Cagliari, Italy, 3-10 Sep. 199

    Selberg integrals in 1D random Euclidean optimization problems

    Full text link
    We consider a set of Euclidean optimization problems in one dimension, where the cost function associated to the couple of points xx and yy is the Euclidean distance between them to an arbitrary power p1p\ge1, and the points are chosen at random with flat measure. We derive the exact average cost for the random assignment problem, for any number of points, by using Selberg's integrals. Some variants of these integrals allows to derive also the exact average cost for the bipartite travelling salesman problem.Comment: 9 pages, 2 figure

    The "autogiro"

    Get PDF
    For the first time in the world, a flying machine, heavier than the air and distinct from the airplane, has completed a circuit of four kilometers (nearly 2.5 miles) at a height of more than 25 meters (82 feet) above the ground

    General duality for abelian-group-valued statistical-mechanics models

    Full text link
    We introduce a general class of statistical-mechanics models, taking values in an abelian group, which includes examples of both spin and gauge models, both ordered and disordered. The model is described by a set of ``variables'' and a set of ``interactions''. A Gibbs factor is associated to each variable and to each interaction. We introduce a duality transformation for systems in this class. The duality exchanges the abelian group with its dual, the Gibbs factors with their Fourier transforms, and the interactions with the variables. High (low) couplings in the interaction terms are mapped into low (high) couplings in the one-body terms. The idea is that our class of systems extends the one for which the classical procedure 'a la Kramers and Wannier holds, up to include randomness into the pattern of interaction. We introduce and study some physical examples: a random Gaussian Model, a random Potts-like model, and a random variant of discrete scalar QED. We shortly describe the consequence of duality for each example.Comment: 26 pages, 2 Postscript figure

    Grassmann Integral Representation for Spanning Hyperforests

    Full text link
    Given a hypergraph G, we introduce a Grassmann algebra over the vertex set, and show that a class of Grassmann integrals permits an expansion in terms of spanning hyperforests. Special cases provide the generating functions for rooted and unrooted spanning (hyper)forests and spanning (hyper)trees. All these results are generalizations of Kirchhoff's matrix-tree theorem. Furthermore, we show that the class of integrals describing unrooted spanning (hyper)forests is induced by a theory with an underlying OSP(1|2) supersymmetry.Comment: 50 pages, it uses some latex macros. Accepted for publication on J. Phys.
    corecore