26 research outputs found
Measurements of the and -induced Coherent Charged Pion Production Cross Sections on by the T2K experiment
We report an updated measurement of the -induced, and the first
measurement of the -induced coherent charged pion production
cross section on nuclei in the T2K experiment. This is measured in a
restricted region of the final-state phase space for which
GeV, and , and at a mean
(anti)neutrino energy of 0.85 GeV using the T2K near detector. The measured
CC coherent pion production flux-averaged cross section on
is . The new measurement
of the -induced cross section on is . The results are compatible with both the NEUT
5.4.0 Berger-Sehgal (2009) and GENIE 2.8.0 Rein-Sehgal (2007) model
predictions
Measurements of the νμ and ν¯μ -induced coherent charged pion production cross sections on C12 by the T2K experiment
We report an updated measurement of the
ν
μ
-induced, and the first measurement of the
¯
ν
μ
-induced coherent charged pion production cross section on
12
C
nuclei in the Tokai-to-Kamioka experiment. This is measured in a restricted region of the final-state phase space for which
p
μ
,
π
>
0.2
GeV
,
cos
(
θ
μ
)
>
0.8
and
cos
(
θ
π
)
>
0.6
, and at a mean (anti)neutrino energy of 0.85 GeV using the T2K near detector. The measured
ν
μ
charged current coherent pion production flux-averaged cross section on
12
C
is
(
2.98
±
0.37
(
stat
)
±
0.31
(
syst
)
+
0.49
−
0.00
(
Q
2
model
)
)
×
10
−
40
cm
2
. The new measurement of the
¯
ν
μ
-induced cross section on
12
C
is
(
3.05
±
0.71
(
stat
)
±
0.39
(
syst
)
+
0.74
−
0.00
(
Q
2
model
)
)
×
10
−
40
cm
2
. The results are compatible with both the NEUT 5.4.0 Berger-Sehgal (2009) and GENIE 2.8.0 Rein-Sehgal (2007) model predictions
Measurements of the νμ and ν ¯ μ -induced coherent charged pion production cross sections on C 12 by the T2K experiment
We report an updated measurement of the νμ-induced, and the first measurement of the ν¯μ-induced coherent charged pion production cross section on C12 nuclei in the Tokai-to-Kamioka experiment. This is measured in a restricted region of the final-state phase space for which pμ,π>0.2 GeV, cos(θμ)>0.8 and cos(θπ)>0.6, and at a mean (anti)neutrino energy of 0.85 GeV using the T2K near detector. The measured νμ charged current coherent pion production flux-averaged cross section on C12 is (2.98±0.37(stat)±0.31(syst)-0.00+0.49(Q2 model))×10-40 cm2. The new measurement of the ν¯μ-induced cross section on C12 is (3.05±0.71(stat)±0.39(syst)-0.00+0.74(Q2 model))×10-40 cm2. The results are compatible with both the NEUT 5.4.0 Berger-Sehgal (2009) and GENIE 2.8.0 Rein-Sehgal (2007) model predictions.</p
First measurement of muon neutrino charged-current interactions on hydrocarbon without pions in the final state using multiple detectors with correlated energy spectra at T2K
This paper reports the first measurement of muon neutrino charged-current interactions without pions in the final state using multiple detectors with correlated energy spectra at T2K. The data was collected on hydrocarbon targets using the off-axis T2K near detector (ND280) and the on-axis T2K near detector (INGRID) with neutrino energy spectra peaked at 0.6 GeV and 1.1 GeV, respectively. The correlated neutrino flux presents an opportunity to reduce the impact of the flux uncertainty and to study the energy dependence of neutrino interactions. The extracted double-differential cross sections are compared to several Monte Carlo neutrino-nucleus interaction event generators showing the agreement between both detectors individually and with the correlated result.</p
Recommended from our members
Measurements of neutrino oscillation parameters from the T2K experiment using 3.6×1021 protons on target
The T2K experiment presents new measurements of neutrino oscillation parameters using 19.7(16.3)×1020 protons on target (POT) in (anti-)neutrino mode at the far detector (FD). Compared to the previous analysis, an additional 4.7×1020 POT neutrino data was collected at the FD. Significant improvements were made to the analysis methodology, with the near-detector analysis introducing new selections and using more than double the data. Additionally, this is the first T2K oscillation analysis to use NA61/SHINE data on a replica of the T2K target to tune the neutrino flux model, and the neutrino interaction model was improved to include new nuclear effects and calculations. Frequentist and Bayesian analyses are presented, including results on sin2θ13 and the impact of priors on the δCP measurement. Both analyses prefer the normal mass ordering and upper octant of sin2θ23 with a nearly maximally CP-violating phase. Assuming the normal ordering and using the constraint on sin2θ13 from reactors, sin2θ23=0.561-0.032+0.021 using Feldman-Cousins corrected intervals, and Δm322=2.494-0.058+0.041×10-3eV2 using constant Δχ2 intervals. The CP-violating phase is constrained to δCP=-1.97-0.70+0.97 using Feldman-Cousins corrected intervals, and δCP=0,π is excluded at more than 90% confidence level. A Jarlskog invariant of zero is excluded at more than 2σ credible level using a flat prior in δCP, and just below 2σ using a flat prior in sinδCP. When the external constraint on sin2θ13 is removed, sin2θ13=28.0-6.5+2.8×10-3, in agreement with measurements from reactor experiments. These results are consistent with previous T2K analyses
First measurement of muon neutrino charged-current interactions on hydrocarbon without pions in the final state using multiple detectors with correlated energy spectra at T2K
Updated discussion in Sec. V-A; Updated author listThis paper reports the first measurement of muon neutrino charged-current interactions without pions in the final state using multiple detectors with correlated energy spectra at T2K. The data was collected on hydrocarbon targets using the off-axis T2K near detector (ND280) and the on-axis T2K near detector (INGRID) with neutrino energy spectra peaked at 0.6 GeV and 1.1 GeV respectively. The correlated neutrino flux presents an opportunity to reduce the impact of the flux uncertainty and to study the energy dependence of neutrino interactions. The extracted double-differential cross sections are compared to several Monte Carlo neutrino-nucleus interaction event generators showing the agreement between both detectors individually and with the correlated result
First measurement of muon neutrino charged-current interactions on hydrocarbon without pions in the final state using multiple detectors with correlated energy spectra at T2K
Updated discussion in Sec. V-A; Updated author listThis paper reports the first measurement of muon neutrino charged-current interactions without pions in the final state using multiple detectors with correlated energy spectra at T2K. The data was collected on hydrocarbon targets using the off-axis T2K near detector (ND280) and the on-axis T2K near detector (INGRID) with neutrino energy spectra peaked at 0.6 GeV and 1.1 GeV respectively. The correlated neutrino flux presents an opportunity to reduce the impact of the flux uncertainty and to study the energy dependence of neutrino interactions. The extracted double-differential cross sections are compared to several Monte Carlo neutrino-nucleus interaction event generators showing the agreement between both detectors individually and with the correlated result
First measurement of muon neutrino charged-current interactions on hydrocarbon without pions in the final state using multiple detectors with correlated energy spectra at T2K
Updated discussion in Sec. V-A; Updated author listThis paper reports the first measurement of muon neutrino charged-current interactions without pions in the final state using multiple detectors with correlated energy spectra at T2K. The data was collected on hydrocarbon targets using the off-axis T2K near detector (ND280) and the on-axis T2K near detector (INGRID) with neutrino energy spectra peaked at 0.6 GeV and 1.1 GeV respectively. The correlated neutrino flux presents an opportunity to reduce the impact of the flux uncertainty and to study the energy dependence of neutrino interactions. The extracted double-differential cross sections are compared to several Monte Carlo neutrino-nucleus interaction event generators showing the agreement between both detectors individually and with the correlated result
Updated T2K measurements of muon neutrino and antineutrino disappearance using 3.6 10 protons on target
Muon neutrino and antineutrino disappearance probabilities are identical in
the standard three-flavor neutrino oscillation framework, but CPT violation and
non-standard interactions can violate this symmetry. In this work we report the
measurements of and independently for
neutrinos and antineutrinos. The aforementioned symmetry violation would
manifest as an inconsistency in the neutrino and antineutrino oscillation
parameters. The analysis discussed here uses a total of 1.9710
and 1.6310 protons on target taken with a neutrino and
antineutrino beam respectively, and benefits from improved flux and
cross-section models, new near detector samples and more than double the data
reducing the overall uncertainty of the result. No significant deviation is
observed, consistent with the standard neutrino oscillation picture