3 research outputs found
Engineering selection stringency on expression vector for the production of recombinant human alpha1-antitrypsin using Chinese Hamster ovary cells
BACKGROUND: Expression vector engineering technology is one of the most convenient and timely method for cell line development to meet the rising demand of novel production cell line with high productivity. Destabilization of dihydrofolate reductase (dhfr) selection marker by addition of AU-rich elements and murine ornithine decarboxylase PEST region was previously shown to improve the specific productivities of recombinant human interferon gamma in CHO-DG44 cells. In this study, we evaluated novel combinations of engineered motifs for further selection marker attenuation to improve recombinant human alpha-1-antitrypsin (rhA1AT) production. Motifs tested include tandem PEST elements to promote protein degradation, internal ribosome entry site (IRES) mutations to impede translation initiation, and codon-deoptimized dhfr selection marker to reduce translation efficiency. RESULTS: After a 2-step methotrexate (MTX) amplification to 50 nM that took less than 3 months, the expression vector with IRES point mutation and dhfr-PEST gave a maximum titer of 1.05 g/l with the top producer cell pool. Further MTX amplification to 300 nM MTX gave a maximum titer of 1.15 g/l. Relative transcript copy numbers and dhfr protein expression in the cell pools were also analysed to demonstrate that the transcription of rhA1AT and dhfr genes were correlated due to the IRES linkage, and that the strategies of further attenuating dhfr protein expression with the use of a mutated IRES and tandem PEST, but not codon deoptimization, were effective in reducing dhfr protein levels in suspension serum free culture. CONCLUSIONS: Novel combinations of engineered motifs for further selection marker attenuation were studied to result in the highest reported recombinant protein titer to our knowledge in shake flask batch culture of stable mammalian cell pools at 1.15 g/l, highlighting applicability of expression vector optimization in generating high producing stable cells essential for recombinant protein therapeutics production. Our results also suggest that codon usage of the selection marker should be considered for applications that may involve gene amplification and serum free suspension culture, since the overall codon usage and thus the general expression and regulation of host cell proteins may be affected in the surviving cells. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12896-015-0145-9) contains supplementary material, which is available to authorized users
Sonolysis of Escherichia coli and Pichia pastoris in microfluidics
We report on an efficient ultrasound based technique for lysing Escherichia coli and Pichia pastoris with oscillating cavitation bubbles in an integrated microfluidic system. The system consists of a meandering microfluidic channel and four piezoelectric transducers mounted on a glass substrate, with the ultrasound exposure and gas pressure regulated by an automatic control system. Controlled lysis of bacterial and yeast cells expressing green fluorescence protein (GFP) is studied with high-speed photography and fluorescence microscopy, and quantified with real-time polymerase chain reaction (qRT-PCR) and fluorescence intensity. The effectiveness of cell lysis correlates with the duration of ultrasound exposure. Complete lysis can be achieved within one second of ultrasound exposure with a temperature increase of less than 3.3 °C. The rod-shaped E. coli bacteria are disrupted into small fragments in less than 0.4 seconds, while the more robust elliptical P. pastoris yeast cells require around 1.0 second for complete lysis. Fluorescence intensity measurements and qRT-PCR analysis show that functionality of GFP and genomic DNA for downstream analytical assays is maintained