6,843 research outputs found
RR LYRAE VARIABLE STARS: PULSATIONAL CONSTRAINTS RELEVANT TO THE OOSTERHOFF CONTROVERSY
A solution to the old Oosterhoff controversy is proposed on the basis of a
new theoretical pulsational scenario concerning RR Lyrae cluster variables
(Bono and coworkers). We show that the observed constancy of the lowest
pulsation period in both Oosterhoff type I (OoI) and Oosterhoff type II (OoII)
prototypes (M3, M15) can be easily reproduced only by assuming the canonical
evolutionary horizontal-branch luminosity levels of these Galactic globular
clusters and therefore by rejecting the Sandage period shift effect (SPSE).Comment: postscript file of 7 pages and 2 figures; one non postcript figure is
available upon request; for any problem please write to
[email protected]
Fractional Fokker-Planck Equation for Ultraslow Kinetics
Several classes of physical systems exhibit ultraslow diffusion for which the
mean squared displacement at long times grows as a power of the logarithm of
time ("strong anomaly") and share the interesting property that the probability
distribution of particle's position at long times is a double-sided
exponential. We show that such behaviors can be adequately described by a
distributed-order fractional Fokker-Planck equations with a power-law
weighting-function. We discuss the equations and the properties of their
solutions, and connect this description with a scheme based on continuous-time
random walks
From Diffusion to Anomalous Diffusion: A Century after Einstein's Brownian Motion
Einstein's explanation of Brownian motion provided one of the cornerstones
which underlie the modern approaches to stochastic processes. His approach is
based on a random walk picture and is valid for Markovian processes lacking
long-term memory. The coarse-grained behavior of such processes is described by
the diffusion equation. However, many natural processes do not possess the
Markovian property and exhibit to anomalous diffusion. We consider here the
case of subdiffusive processes, which are semi-Markovian and correspond to
continuous-time random walks in which the waiting time for a step is given by a
probability distribution with a diverging mean value. Such a process can be
considered as a process subordinated to normal diffusion under operational time
which depends on this pathological waiting-time distribution. We derive two
different but equivalent forms of kinetic equations, which reduce to know
fractional diffusion or Fokker-Planck equations for waiting-time distributions
following a power-law. For waiting time distributions which are not pure power
laws one or the other form of the kinetic equation is advantageous, depending
on whether the process slows down or accelerates in the course of time
Novel sulfur and selenium containing bis-α-amino acids from 4-hydroxyproline
The synthesis of new substituted prolines carrying at C-4 a second α-amino acid residue is reported. The amino acid, l-cysteine or l-selenocysteine, is linked to the proline ring through the sulfur or the selenium atom, respectively. The products were prepared with different stereochemistry at C-4, in few and clean high-yielding steps, with suitable protections for solid phase applications. The introduction of both sulfur and selenium atoms at C-4 of the proline ring seems to enhance significantly the cis geometry at the prolyl amide bond
- …