10 research outputs found
Antiviral potency of long-acting islatravir subdermal implant in SHIV-infected macaques
Treatment nonadherence is a pressing issue in people living with HIV (PLWH), as they require lifelong therapy to maintain viral suppression. Poor adherence leads to antiretroviral (ARV) resistance, transmission to others, AIDS progression, and increased morbidity and mortality. Long-acting (LA) ARV therapy is a promising strategy to combat the clinical drawback of user-dependent dosing. Islatravir (ISL) is a promising candidate for HIV treatment given its long half-life and high potency. Here we show constant ISL release from a subdermal LA nanofluidic implant achieves viral load reduction in SHIV-infected macaques. Specifically, a mean delivery dosage of 0.21 ± 0.07 mg/kg/day yielded a mean viral load reduction of -2.30 ± 0.53 lo
Neovascularized implantable cell homing encapsulation platform with tunable local immunosuppressant delivery for allogeneic cell transplantation.
Cell encapsulation is an attractive transplantation strategy to treat endocrine disorders. Transplanted cells offer a dynamic and stimulus-responsive system that secretes therapeutics based on patient need. Despite significant advancements, a challenge in allogeneic cell encapsulation is maintaining sufficient oxygen and nutrient exchange, while providing protection from the host immune system. To this end, we developed a subcutaneously implantable dual-reservoir encapsulation system integrating in situ prevascularization and local immunosuppressant delivery, termed NICHE. NICHE structure is 3D-printed in biocompatible polyamide 2200 and comprises of independent cell and drug reservoirs separated by a nanoporous membrane for sustained local release of immunosuppressant. Here we present the development and characterization of NICHE, as well as efficacy validation for allogeneic cell transplantation in an immunocompetent rat model. We established biocompatibility and mechanical stability of NICHE. Further, NICHE vascularization was achieved with the aid of mesenchymal stem cells. Our study demonstrated sustained local elution of immunosuppressant (CTLA4Ig) into the cell reservoir protected transcutaneously-transplanted allogeneic Leydig cells from host immune destruction during a 31-day study, and reduced systemic drug exposure by 12-fold. In summary, NICHE is the first encapsulation platform achieving both in situ vascularization and immunosuppressant delivery, presenting a viable strategy for allogeneic cell transplantation
Changes in local tissue microenvironment in response to subcutaneous long-acting delivery of tenofovir alafenamide in rats and non-human primates
Several implantable long-acting (LA) delivery systems have been developed for sustained subcutaneous administration of tenofovir alafenamide (TAF), a potent and effective nucleotide reverse transcriptase inhibitor used for HIV pre-exposure prophylaxis (PrEP). LA platforms aim to address the lack of adherence to oral regimens, which has impaired PrEP efficacy. Despite extensive investigations in this field, tissue response to sustained subcutaneous TAF delivery remains to be elucidated as contrasting preclinical results have been reported in the literature. To this end, here we studied the local foreign body response (FBR) to sustained subdermal delivery of three forms of TAF, namely TAF free base (TA
Recommended from our members
Implantable niche with local immunosuppression for islet allotransplantation achieves type 1 diabetes reversal.
Abstract
Pancreatic islet transplantation efficacy for type 1 diabetes (T1D) management is limited by hypoxia-related graft attrition and need for systemic immunosuppression. To overcome these challenges, we developed the Neovascularized Implantable Cell Homing and Encapsulation (NICHE) device, which integrates direct vascularization for facile mass transfer and localized immunosuppressant delivery for islet rejection prophylaxis. Here, we investigated NICHE efficacy for allogeneic islet transplantation and long-term diabetes reversal in an immunocompetent rat model. We demonstrated that polyamide is superior to resin for NICHE subQ integration and vascularization. We demonstrated allogeneic islets transplanted within pre-vascularized NICHE were engrafted, revascularized, and reverted diabetes in rats for over 150 days. Notably, we confirmed that localized immunosuppression prevented islet rejection without inducing toxicity or systemic immunosuppression. Moreover, for translatability efforts, we showed NICHE biocompatibility and feasibility of deployment, as well as short-term allogeneic islet engraftment in an MHC-mismatched nonhuman primate model. In sum, the NICHE is a safe and effective platform for islet transplantation and long-term T1D management.</jats:p
Implantable niche with local immunosuppression for islet allotransplantation achieves type 1 diabetes reversal in rats
Islet transplantation for type 1 diabetes management is hindered by the life-long need for immunosuppressive medications. Here, the authors report an islet encapsulation device with local anti-rejection drug release that achieves long-term diabetes reversal in male rats and reduces drug-related toxicity