1,791 research outputs found
Spontaneous polarisation of the neutral interface for valence asymmetric coulombic systems
In this paper, we discuss the phenomenon of a spontaneous polarisation of a
neutral hard planar interface for valence asymmetric coulombic systems. Within
a field theoretical description, we account for the existence of non trivial
charge density and electric potential profiles. The analysis of the phenomenon
shows that the effect is related to combinatorics in relation with the
existence of the two independent species cations and anions. This simple and
basic feature is related to the quantum mechanical properties of the system.
The theoretical results are compared with numerical simulations data and are
shown to be in very good agreement, which a fortiori justifies our physical
interpretation.Comment: 12 pages, 11 figure
Effect of in-source beam shaping and laser beam oscillation on the electromechanical properties of Ni-plated steel joints for e-vehicle battery manufacturing
Laser welding is a key enabling technology that transitions toward electric mobility, producing joints with elevated electrical and mechanical properties. In the production of battery packs, cells to busbar connections are challenging due to strict tolerances and zero-fault policy. Hence, it is of great interest to investigate how beam shaping techniques may be exploited to enhance the electromechanical properties as well as to improve material processability. Industrial laser systems often provide the possibility to oscillate dynamically the beam or redistribute the power in multicore fibers. Although contemporary equipment enables elevated flexibility in terms of power redistribution, further studies are required to indicate the most adequate solution for the production of high performance batteries. Within the present investigation, both in-source beam shaping and beam oscillation techniques have been exploited to perform 0.2-0.2 mm Ni-plated steel welds in lap joint configuration, representative of typical cell to busbar connections. An experimental campaign allowed us to define process feasibility conditions where partial penetration welds could be achieved by means of in-source beam shaping. Hence, beam oscillation was explored to perform the connections. In the subset of feasible conditions, the mechanical strength was determined via tensile tests alongside electrical resistance measurements. Linear welds with a Gaussian beam profile enabled joints with the highest productivity at constant electromechanical properties. Spatter formation due to keyhole instabilities could be avoided by redistributing the emission power via multicore fibers, while dynamic oscillation did not provide significant benefits
Shedding Light on Diatom Photonics by means of Digital Holography
Diatoms are among the dominant phytoplankters in the worl's ocean, and their
external silica investments, resembling artificial photonics crystal, are
expected to play an active role in light manipulation. Digital holography
allowed studying the interaction with light of Coscinodiscus wailesii cell wall
reconstructing the light confinement inside the cell cytoplasm, condition that
is hardly accessible via standard microscopy. The full characterization of the
propagated beam, in terms of quantitative phase and intensity, removed a
long-standing ambiguity about the origin of the light. The data were discussed
in the light of living cell behavior in response to their environment
Assessment of poststress left ventricular ejection fraction by gated SPECT: comparison with equilibrium radionuclide angiocardiography
PURPOSE: We compared left ventricular (LV) ejection fraction obtained by gated SPECT with that obtained by equilibrium radionuclide angiocardiography in a large cohort of patients.
METHODS: Within 1 week, 514 subjects with suspected or known coronary artery disease underwent same-day stress-rest (99m)Tc-sestamibi gated SPECT and radionuclide angiocardiography. For both studies, data were acquired 30 min after completion of exercise and after 3 h rest.
RESULTS: In the overall study population, a good correlation between ejection fraction measured by gated SPECT and by radionuclide angiocardiography was observed at rest (r=0.82, p<0.0001) and after stress (r=0.83, p<0.0001). In Bland-Altman analysis, the mean differences in ejection fraction (radionuclide angiocardiography minus gated SPECT) were -0.6% at rest and 1.7% after stress. In subjects with normal perfusion (n=362), a good correlation between ejection fraction measured by gated SPECT and by radionuclide angiocardiography was observed at rest (r=0.72, p<0.0001) and after stress (r=0.70, p<0.0001) and the mean differences in ejection fraction were -0.9% at rest and 1.4% after stress. Also in patients with abnormal perfusion (n=152), a good correlation between the two techniques was observed both at rest (r=0.89, p<0.0001) and after stress (r=0.90, p<0.0001) and the mean differences in ejection fraction were 0.1% at rest and 2.5% after stress.
CONCLUSION: In a large study population, a good agreement was observed in the evaluation of LV ejection fraction between gated SPECT and radionuclide angiocardiography. However, in patients with perfusion abnormalities, a slight underestimation in poststress LV ejection fraction was observed using gated SPECT as compared to equilibrium radionuclide angiocardiography
Tailoring the microstructure of Fe-2.9wt.%Si alloy in laser powder bed fusion using in-source beam shaping
Tuning the irradiance profile of the laser beam opens up new possibilities in terms of controlling the thermal field the material is subjected to during laser powder bed fusion (PBF-LB/M). This control can be exploited to manipulate the material's microstructure. In this work, a contemporary high power fibre laser with in-source beam shaping capability was used to test different irradiance profiles ranging from Gaussian to ring during the PBF-LB/M of Fe-2.9wt.%Si alloy. This soft magnetic alloy is used in electrical machines, and its magnetic properties are known to be correlated to the microstructure. Initially, the experimental work assessed the influence of peak and ring irradiance levels on densification and grain morphology. In a second experimental run, the influence of the beam profile on the conventionally employed energy density was verified. The results demonstrated that the use of combined Gaussian-ring profiles offers a method for manipulating grain size and shape from a columnar towards an equiaxed shape, without requiring a change in the scan strategy
Analytical modeling and characterization of ring beam profiles for high-power lasers used in industrial manufacturing
Active fibre lasers are widely used in the industry for different manufacturing applications ranging from cutting, to welding and additive manufacturing. The recent introduction of the multiple-core fibre lasers allows these sources to flexibly change the Power Density Distribution (PDD) from conventional Gaussian profiles towards ring shapes. While the advantages of the novel beam shapes over the conventional ones are still being explored, the need for modeling tools to define the PDD shapes becomes more evident. This work studies the analytical modeling of Gaussian to ring profiles with the aim to move towards standardized parameters referable to the manufacturing processes. The proposed models combine Gaussian and annular components to define the novel beam shapes. Among the different models assessed, the Torus and Multi-Gaussian approaches exhibited the best fitting quality thus enabling the definition of descriptive metrics of the PDD. The modeling framework developed was validated on an industrial Laser Powder Bed Fusion (LPBF) system with a double-core light source. The beam shape variation along the propagation axis was assessed to analyze the effect of defocusing using the developed beam parameters. Eventually, the best performing model was furtherly validated with a bead on plate experiment to explain how the model coefficients can be jointly exploited to predict the material response using a Gaussian or a ring beam profile
Application of the coherent state formalism to multiply excited states
A general expression is obtained for the matrix element of an m-body operator
between coherent states constructed from multiple orthogonal coherent boson
species. This allows the coherent state formalism to be applied to states
possessing an arbitrarily large number of intrinsic excitation quanta. For
illustration, the formalism is applied to the two-dimensional vibron model
[U(3) model], to calculate the energies of all excited states in the large-N
limit.Comment: LaTeX (iopart); 10 pages; to be published in J. Phys.
Hand-Held Laser Welding of AISI301LN for components with aesthetic requirements: Toward the integration of machine and human intelligence
The use of Hand-Held Laser Welding (HHLW) systems in the industry has been rapidly growing in recent years as an alternative solution to conventional manual arc-based welding systems. The decreasing cost of fiber laser sources and optics has been a driving factor in enabling a wider use of HHLW systems, beyond the established advantages of laser technology with respect to arc-based systems. While the industrial use of HHLW increases, the subject matter has been studied sparingly in the scientific literature. Due to the intrinsic flexibility of the technology, HHLW systems are highly appealing for joining relatively low thickness metals (≤2 mm) in autogenous configuration in sectors where production lots present low batch and high variability. However, a critical aspect of HHLW is correlated to the operator skill, where welding velocities can vary within and between the welds affecting both their aesthetic and mechanical properties. Hence, the development of combined digital and physical approaches to support manual operations may be highly beneficial. The current study presents an open laboratory HHLW system designed for process development purposes. Beyond conventional manual welding operations, the welding torch could be arranged in different configurations. The system could be combined with a linear axis (enabling welding with stable velocity and inclination) or manually with the aid of a newly developed roller device designed to provide constant speed and inclination. First, the process was benchmarked by joining in butt weld configuration 2 mm thick AISI301LN stainless steel sheets with the linear axis. Successively, four operators with different levels of training (rookie and professional) realized welds with the system in hand-held configuration and with the mechanical roller. The weld width variability was assessed as a direct indicator for aesthetic compliance while tensile tests were allowed to determine the mechanical properties of the joint obtained with different configurations
A formally exact field theory for classical systems at equilibrium
We propose a formally exact statistical field theory for describing classical
fluids with ingredients similar to those introduced in quantum field theory. We
consider the following essential and related problems : i) how to find the
correct field functional (Hamiltonian) which determines the partition function,
ii) how to introduce in a field theory the equivalent of the indiscernibility
of particles, iii) how to test the validity of this approach. We can use a
simple Hamiltonian in which a local functional transposes, in terms of fields,
the equivalent of the indiscernibility of particles. The diagrammatic expansion
and the renormalization of this term is presented. This corresponds to a non
standard problem in Feynman expansion and requires a careful investigation.
Then a non-local term associated with an interaction pair potential is
introduced in the Hamiltonian. It has been shown that there exists a mapping
between this approach and the standard statistical mechanics given in terms of
Mayer function expansion. We show on three properties (the chemical potential,
the so-called contact theorem and the interfacial properties) that in the field
theory the correlations are shifted on non usual quantities. Some perspectives
of the theory are given.Comment: 20 pages, 8 figure
- …