31 research outputs found

    Objective truth in matters of taste

    Get PDF
    In matters of personal taste, faultless disagreement occurs between people who disagree over what is tasty, fun, etc., in those cases when each of these people seems equally far from the objective truth. Faultless disagreement is often taken as evidence that truth is relative. This article aims to help us avoid the truth-relativist conclusion. The article, however, does not argue directly against relativism; instead, the article defends non-relative truth constructively, aiming to explain faultless disagreement with the resources of semantic contextualism. To this end the article describes and advocates a contextualist solution inspired by supervaluationist truth-value gap approaches. The solution presented here, however, does not require truth value gaps; it preserves both logical bivalence and non-relative truth, even while it acknowledges and explains the possibility of faultless disagreement. The solution is motivated by the correlation between assertions’ being true and their being useful. This correlation, furthermore, is used not only to tell which assertions are true, but also to determine which linguistic intuitions are reliable

    Note on the Individuation of Biological Traits

    Get PDF

    A Counterexample to Variabilism

    Full text link

    A New Source of Data About Singular Thought

    Get PDF

    Non-Consensual Vaccination and Medical Harassment: Giving Vaccine Refusers Their Due

    Get PDF
    This article argues that non-consensual vaccination is morally impermissible, for the same reasons for which sexual assault is not permissible. Likewise, mandatory vaccination is morally akin to sexual harassment, and therefore is not to be allowed

    Making sense of ‘genetic programs’: biomolecular Post–Newell production systems

    Get PDF
    The biomedical literature makes extensive use of the concept of a genetic program. So far, however, the nature of genetic programs has received no satisfactory elucidation from the standpoint of computer science. This unsettling omission has led to doubts about the very existence of genetic programs, on the grounds that gene regulatory networks lack a predetermined schedule of execution, which may seem to contradict the very idea of a program. I show, however, that we can make perfect sense of genetic programs, if only we abandon the preconception that all computers have a von Neumann architecture. Instead, genetic programs instantiate the computational architecture of Post–Newell Production Systems. That is, genetic programs are unordered sets of conditional instructions, instructions that fire independently when their conditions are matched. For illustration I present a paradigm Production System that regulates the functioning of the well-known lac operon of E. coli. On close reflection it turns out that not only genes, but also proteins encode instructions. I propose, therefore, to rename genetic programs to biomolecular programs. Biomolecular and/or genetic programs, and the cellular computers than run them, are to be understood not as von Neumann computers, but as Post–Newell production systems

    NKG2D expression in CD4+ T lymphocytes as a marker of senescence in the aged immune system

    Get PDF
    Human aging is characterized by changes in the immune system which have a profound impact on the T-cell compartment. These changes are more frequently found in CD8+ T cells, and there are not well-defined markers of differentiation in the CD4+ subset. Typical features of cell immunosenescence are characteristics of pathologies in which the aberrant expression of NKG2D in CD4+ T cells has been described. To evaluate a possible age-related expression of NKG2D in CD4+ T cells, we compared their percentage in peripheral blood from 100 elderly and 50 young adults. The median percentage of CD4+ NKG2D+ in elders was 5.3% (interquartile range (IR): 8.74%) versus 1.4% (IR: 1.7%) in young subjects (p < 0.3 × 10−10). CD28 expression distinguished two subsets of CD4+ NKG2D+ cells with distinct functional properties and differentiation status. CD28+ cells showed an immature phenotype associated with high frequencies of CD45RA and CD31. However, most of the NKG2D+ cells belonged to the CD28null compartment and shared their phenotypical properties. NKG2D+ cells represented a more advanced stage of maturation and exhibited greater response to CMV (5.3 ± 3.1% versus 3.4 ± 2%, p = 0.037), higher production of IFN-γ (40.56 ± 13.7% versus 24 ± 8.8%, p = 0.015), lower activation threshold and reduced TREC content. Moreover, the frequency of the CD4+ NKG2D+ subset was clearly related to the status of the T cells. Higher frequencies of the NKG2D+ subset were accompanied with a gradual decrease of NAIVE and central memory cells, but also with a higher level of more differentiated subsets of CD4+ T cells. In conclusion, CD4+ NKG2D+ represent a subset of highly differentiated T cells which characterizes the senescence of the immune system

    The immunopathology of ANCA-associated vasculitis.

    Get PDF
    The small-vessel vasculitides are a group of disorders characterised by variable patterns of small blood vessel inflammation producing a markedly heterogeneous clinical phenotype. While any vessel in any organ may be involved, distinct but often overlapping sets of clinical features have allowed the description of three subtypes associated with the presence of circulating anti-neutrophil cytoplasmic antibodies (ANCA), namely granulomatosis with polyangiitis (GPA, formerly known as Wegener's Granulomatosis), microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis (eGPA, formerly known as Churg-Strauss syndrome). Together, these conditions are called the ANCA-associated vasculitidies (AAV). Both formal nomenclature and classification criteria for the syndromes have changed repeatedly since their description over 100 years ago and may conceivably do so again following recent reports showing distinct genetic associations of patients with detectable ANCA of distinct specificities. ANCA are not only useful in classifying the syndromes but substantial evidence implicates them in driving disease pathogenesis although the mechanism by which they develop and tolerance is broken remains controversial. Advances in our understanding of the pathogenesis of the syndromes have been accompanied by some progress in treatment, although much remains to be done to improve the chronic morbidity associated with the immunosuppression required for disease control
    corecore