502 research outputs found
Statistics of Intrinsic alignments and Weak Lensing
The content of this work is two-fold. In the first part we present a study on
the contamination of the intrinsic alignments to weak lensing measurements
in the future survey Euclid. On the grounds of the tidal torque theory, we have
adopted from the literature two related prescriptions for modeling the intrinsic
alignment signal and computed for both the resulting biases in the cosmological
parameters.We find a slight discrepancy among the two models, which both
significantly (up to > 3sigma) contaminate the estimates for Omega_m and sigma_8. The other
parameters h, ns and w appear less affected. In the second part we present results
based on an innovative statistical approach, the extreme value statistics.
We investigate up to which level the primordial non-Gaussianities parameters
fNL and gNL inherited by the bi- and trispectra of the weak lensing convergence
can be constrained by the most extreme values of the convergence field.We find
constraints of the order of 102 for fNL and 105 for gNL if individual extreme values
are considered, therefore sadly showing only a relatively weak constraining
power
DNA topoisomerase I inhibition by camptothecin induces escape of RNA polymerase II from promoter-proximal pause site, antisense transcription and histone acetylation at the human HIF-1α gene locus
Top1 inhibition by camptothecin (CPT) perturbs RNA polymerase II (Pol II) density at promoters and along transcribed genes suggesting an involvement of Top1 in Pol II pausing. Here, we demonstrate that Top1 inhibition favors Pol II escape from a promoter-proximal pausing site of the human HIF-1α gene in living cells. Interestingly, alternative splicing at exon 11 was markedly altered in nascent HIF-1α mRNAs, and chromatin structure was also affected with enhanced histone acetylation and reduced nucleosome density in a manner dependent on cdk activity. Moreover, CPT increases transcription of a novel long RNA (5′aHIF1α), antisense to human HIF-1α mRNA, and a known antisense RNA at the 3′-end of the gene, while decreasing mRNA levels under normoxic and hypoxic conditions. The effects require Top1, but are independent from Top1-induced replicative DNA damage. Chromatin RNA immunoprecipitation results showed that CPT can activate antisense transcription mediated by cyclin-dependent kinase (cdk) activity. Thus, Top1 inhibition can trigger a transcriptional stress, involving antisense transcription and increased chromatin accessibility, which is dependent on cdk activity and deregulated Pol II pausing. A changed balance of antisense transcripts and mRNAs may then lead to altered regulation of HIF-1α activity in human cancer cells
Role of Flexibility in Protein-DNA-Drug Recognition: The Case of Asp677Gly-Val703Ile Topoisomerase Mutant Hypersensitive to Camptothecin
Topoisomerases I are ubiquitous enzymes that control DNA topology within the cell. They are the unique target of the antitumor drug camptothecin that selectively recognizes the DNA-topoisomerase covalent complex and reversibly stabilizes it. The biochemical and structural-dynamical properties of the Asp677Gly-Val703Ile double mutant with enhanced CPT sensitivity have been investigated. The mutant displays a lower religation rate of the DNA substrate when compared to the wild-type protein. Analyses of the structural dynamical properties by molecular dynamics simulation show that the mutant has reduced flexibility and an active site partially destructured at the level of the Lys532 residue. These results demonstrate long-range communication mechanism where reduction of the linker flexibility alters the active site geometry with the consequent lowering of the religation rate and increase in drug sensitivity
Mapping Drug Interactions at the Covalent Topoisomerase II-DNA Complex by Bisantrene/Amsacrine Congeners *
To identify structural determinants for the sequence-specific recognition of covalent topoisomerase II-DNA complexes by anti-cancer drugs, we investigated a number of bisantrene congeners, including a 10-azabioisoster, bearing one or two 4, 5-dihydro-1H-imidazol-2-yl hydrazone side chains at positions 1, 4, or 9 of the anthracene ring system. The studied bisantrene/amsacrine (m-AMSA) hybrid and bisantrene isomers were able to poison DNA topoisomerase II with an intermediate activity between those of bisantrene and m-AMSA. Moving the side chain from the central to a lateral ring (from C-9 to C-1/C-4) only slightly modified the drug DNA affinity, whereas it dramatically affected local base preferences of poison-stimulated DNA cleavage. In contrast, switching the planar aromatic systems of bisantrene and m-AMSA did not substantially alter the sequence specificity of drug action. A computer-assisted steric and electrostatic alignment analysis of the test compounds was in agreement with the experimental data, since a common pharmacophore was shared by bisantrene, m-AMSA, and 9-substituted analogs, whereas the 1-substituted isomer showed a radically changed pharmacophoric structure. Thus, the relative space occupancy and electron distribution of putative DNA binding (aromatic rings) and enzyme binding (side chains) moieties are fundamental in directing the specific action of topoisomerase II poisons and in determining the poison pharmacophore
MYCN Amplification, along with Wild-Type RB1 Expression, Enhances CDK4/6 Inhibitors’ Efficacy in Neuroblastoma Cells
Neuroblastoma (NB) is one of the primary causes of death for pediatric malignancies. Given the high heterogeneity in NB's mutation landscape, optimizing individualized therapies is still challenging. In the context of genomic alterations, MYCN amplification is the most correlated event with poor outcomes. MYCN is involved in the regulation of several cellular mechanisms, including cell cycle. Thus, studying the influence of MYCN overexpression in the G1/S transition checkpoint of the cell cycle may unveil novel druggable targets for the development of personalized therapeutical approaches. Here, we show that high expression of E2F3 and MYCN correlate with poor prognosis in NB despite the RB1 mRNA levels. Moreover, we demonstrate through luciferase reporter assays that MYCN bypasses RB function by incrementing E2F3-responsive promoter activity. We showed that MYCN overexpression leads to RB inactivation by inducing RB hyperphosphorylation during the G1 phase through cell cycle synchronization experiments. Moreover, we generated two MYCN-amplified NB cell lines conditionally knockdown (cKD) for the RB1 gene through a CRISPRi approach. Indeed, RB KD did not affect cell proliferation, whereas cell proliferation was strongly influenced when a non-phosphorylatable RB mutant was expressed. This finding revealed the dispensable role of RB in regulating MYCN-amplified NB's cell cycle. The described genetic interaction between MYCN and RB1 provides the rationale for using cyclin/CDK complexes inhibitors in NBs carrying MYCN amplification and relatively high levels of RB1 expression
DNA Topoisomerase I differentially modulates R-loops across the human genome
Background: Co-transcriptional R-loops are abundant non-B DNA structures in mammalian genomes. DNA Topoisomerase I (Top1) is often thought to regulate R-loop formation owing to its ability to resolve both positive and negative supercoils. How Top1 regulates R-loop structures at a global level is unknown. Results: Here, we perform high-resolution strand-specific R-loop mapping in human cells depleted for Top1 and find that Top1 depletion results in both R-loop gains and losses at thousands of transcribed loci, delineating two distinct gene classes. R-loop gains are characteristic for long, highly transcribed, genes located in gene-poor regions anchored to Lamin B1 domains and in proximity to H3K9me3-marked heterochromatic patches. R-loop losses, by contrast, occur in gene-rich regions overlapping H3K27me3-marked active replication initiation regions. Interestingly, Top1 depletion coincides with a block of the cell cycle in G0/G1 phase and a trend towards replication delay. Conclusions: Our findings reveal new properties of Top1 in regulating R-loop homeostasis in a context-dependent manner and suggest a potential role for Top1 in modulating the replication process via R-loop formation
- …