13 research outputs found

    Dark Matter from Monogem

    Full text link
    As a supernova shock expands into space, it may collide with dark matter particles, scattering them up to velocities more than an order of magnitude larger than typical dark matter velocities in the Milky Way. If a supernova remnant is close enough to Earth, and the appropriate age, this flux of high-velocity dark matter could be detectable in direct detection experiments, particularly if the dark matter interacts via a velocity-dependent operator. This could make it easier to detect light dark matter that would otherwise have too little energy to be detected. We show that the Monogem Ring supernova remnant is both close enough and the correct age to produce such a flux, and thus we produce novel direct detection constraints and sensitivities for future experiments.Comment: 8 Pages of Text, 3 Figure

    (Not as) Big as a Barn: Upper Bounds on Dark Matter-Nucleus Cross Sections

    Full text link
    Critical probes of dark matter come from tests of its elastic scattering with nuclei. The results are typically assumed to be model-independent, meaning that the form of the potential need not be specified and that the cross sections on different nuclear targets can be simply related to the cross section on nucleons. For point-like spin-independent scattering, the assumed scaling relation is σχAA2μA2σχNA4σχN\sigma_{\chi A} \propto A^2 \mu_A^2 \sigma_{\chi N}\propto A^4 \sigma_{\chi N}, where the A2A^2 comes from coherence and the μA2A2mN2\mu_A^2\simeq A^2 m_N^2 from kinematics for mχmAm_\chi\gg m_A. Here we calculate where model independence ends, i.e., where the cross section becomes so large that it violates its defining assumptions. We show that the assumed scaling relations generically fail for dark matter-nucleus cross sections σχA10321027  cm2\sigma_{\chi A} \sim 10^{-32}-10^{-27}\;\text{cm}^2, significantly below the geometric sizes of nuclei, and well within the regime probed by underground detectors. Last, we show on theoretical grounds, and in light of existing limits on light mediators, that point-like dark matter cannot have σχN1025  cm2\sigma_{\chi N}\gtrsim10^{-25}\;\text{cm}^2, above which many claimed constraints originate from cosmology and astrophysics. The most viable way to have such large cross sections is composite dark matter, which introduces significant additional model dependence through the choice of form factor. All prior limits on dark matter with cross sections σχN>1032  cm2\sigma_{\chi N}>10^{-32}\;\text{cm}^2 with mχ1  GeVm_\chi\gtrsim 1\;\text{GeV} must therefore be re-evaluated and reinterpreted.Comment: 17 pages, 7 figures, comments are welcom

    New Constraints on Macroscopic Dark Matter Using Radar Meteor Detectors

    Full text link
    We show that dark-matter candidates with large masses and large nuclear interaction cross sections are detectable with terrestrial radar systems. We develop our results in close comparison to successful radar searches for tiny meteoroids, aggregates of ordinary matter. The path of a meteoroid (or suitable dark-matter particle) through the atmosphere produces ionization deposits that reflect incident radio waves. We calculate the equivalent radar echoing area or `radar cross section' for dark matter. By comparing the expected number of dark-matter-induced echoes with observations, we set new limits in the plane of dark-matter mass and cross section, complementary to pre-existing cosmological limits. Our results are valuable because (A) they open a new detection technique for which the reach can be greatly improved and (B) in case of a detection, the radar technique provides differential sensitivity to the mass and cross section, unlike cosmological probes.Comment: Main text 14 pages and 11 figures, Appendix 2 pages and 3 figure

    The s ---> d gamma decay in and beyond the Standard Model

    Get PDF
    The New Physics sensitivity of the s ---> d gamma transition and its accessibility through hadronic processes are thoroughly investigated. Firstly, the Standard Model predictions for the direct CP-violating observables in radiative K decays are systematically improved. Besides, the magnetic contribution to epsilon prime is estimated and found subleading, even in the presence of New Physics, and a new strategy to resolve its electroweak versus QCD penguin fraction is identified. Secondly, the signatures of a series of New Physics scenarios, characterized as model-independently as possible in terms of their underlying dynamics, are investigated by combining the information from all the FCNC transitions in the s ---> d sector.Comment: 54 pages, 14 eps figure

    Snowmass2021 cosmic frontier white paper: Ultraheavy particle dark matter

    No full text
    We outline the unique opportunities and challenges in the search for "ultraheavy" dark matter candidates with masses between roughly 10 TeV and the Planck scale mpl1016m_{\rm pl} ≈ 10^{16} TeV. This mass range presents a wide and relatively unexplored dark matter parameter space, with a rich space of possible models and cosmic histories. We emphasize that both current detectors and new, targeted search techniques, via both direct and indirect detection, are poised to contribute to searches for ultraheavy particle dark matter in the coming decade. We highlight the need for new developments in this space, including new analyses of current and imminent direct and indirect experiments targeting ultraheavy dark matter and development of new, ultra-sensitive detector technologies like next-generation liquid noble detectors, neutrino experiments, and specialized quantum sensing techniques

    Snowmass2021 Cosmic Frontier White Paper: Ultraheavy particle dark matter

    No full text
    We outline the unique opportunities and challenges in the search for "ultraheavy" dark matter candidates with masses between roughly 10 TeV10~{\rm TeV} and the Planck scale mpl1016 TeVm_{\rm pl} \approx 10^{16}~{\rm TeV}. This mass range presents a wide and relatively unexplored dark matter parameter space, with a rich space of possible models and cosmic histories. We emphasize that both current detectors and new, targeted search techniques, via both direct and indirect detection, are poised to contribute to searches for ultraheavy particle dark matter in the coming decade. We highlight the need for new developments in this space, including new analyses of current and imminent direct and indirect experiments targeting ultraheavy dark matter and development of new, ultra-sensitive detector technologies like next-generation liquid noble detectors, neutrino experiments, and specialized quantum sensing techniques
    corecore