2,112 research outputs found

    The present rate of Supernovae

    Get PDF
    We present and discuss the most recent determination of the rate of Supernovae in the local Universe. A comparison with other results shows a general agreement on the gross values but still significant differences on the values of the rates of various SN rates in different kinds of galaxies. The rate of SNe, used as a probe of Star Formation, confirms the young progenitor scenario for SNII+Ib/c. The increasing diversity of SNe reflects also in the SN yields which may affect the chemical evolution of the Galaxy but, because of the limited statistics, we cannot estimate the contributions of the new subtypes yet. It is also expected that in a few years observational determinations of the SN rates at various look-back times will be available.Comment: 9 pages, Latex, 1 figure, To appear in the proceedings of the conference "The Chemical Evolution of The Milky Way: Stars versus Clusters", eds. F. Matteucci and F. Giovannelli, Vulcano, Italy, September 20-24 199

    Telecom photon interface of solid-state quantum nodes

    Full text link
    Solid-state spins such as nitrogen-vacancy (NV) center are promising platforms for large-scale quantum networks. Despite the optical interface of NV center system, however, the significant attenuation of its zero-phonon-line photon in optical fiber prevents the network extended to long distances. Therefore a telecom-wavelength photon interface would be essential to reduce the photon loss in transporting quantum information. Here we propose an efficient scheme for coupling telecom photon to NV center ensembles mediated by rare-earth doped crystal. Specifically, we proposed protocols for high fidelity quantum state transfer and entanglement generation with parameters within reach of current technologies. Such an interface would bring new insights into future implementations of long-range quantum network with NV centers in diamond acting as quantum nodes.Comment: 10 pages, 5 figure

    Superfluids, Fluctuations and Disorder

    Get PDF
    We present a field-theory description of ultracold bosonic atoms in presence of a disordered external potential. By means of functional integration techniques, we aim to investigate and review the interplay between disordered energy landscapes and fluctuations, both thermal and quantum ones. Within the broken-symmetry phase, up to the Gaussian level of approximation, the disorder contribution crucially modifies both the condensate depletion and the superfluid response. Remarkably, it is found that the ordered (i.e. superfluid) phase can be destroyed also in regimes where the random external potential is suitable for a perturbative analysis. We analyze the simplest case of quenched disorder and then we move to present the implementation of the replica trick for ultracold bosonic systems. In both cases, we discuss strengths and limitations of the reviewed approach, paying specific attention to possible extensions and the most recent experimental outputs.Comment: 18 pages, 1 figures. Accepted as a Review for the special issue "Quantum Optics for Fundamental Quantum Mechanics" in Applied Science

    Exact dimension estimation of interacting qubit systems assisted by a single quantum probe

    Full text link
    Estimating the dimension of an Hilbert space is an important component of quantum system identification. In quantum technologies, the dimension of a quantum system (or its corresponding accessible Hilbert space) is an important resource, as larger dimensions determine e.g. the performance of quantum computation protocols or the sensitivity of quantum sensors. Despite being a critical task in quantum system identification, estimating the Hilbert space dimension is experimentally challenging. While there have been proposals for various dimension witnesses capable of putting a lower bound on the dimension from measuring collective observables that encode correlations, in many practical scenarios, especially for multiqubit systems, the experimental control might not be able to engineer the required initialization, dynamics and observables. Here we propose a more practical strategy, that relies not on directly measuring an unknown multiqubit target system, but on the indirect interaction with a local quantum probe under the experimenter's control. Assuming only that the interaction model is given and the evolution correlates all the qubits with the probe, we combine a graph-theoretical approach and realization theory to demonstrate that the dimension of the Hilbert space can be exactly estimated from the model order of the system. We further analyze the robustness in the presence of background noise of the proposed estimation method based on realization theory, finding that despite stringent constrains on the allowed noise level, exact dimension estimation can still be achieved.Comment: v3: accepted version. We would like to offer our gratitudes to the editors and referees for their helpful and insightful opinions and feedback

    Finite-Range Corrections to the Thermodynamics of the One-Dimensional Bose Gas

    Full text link
    The Lieb-Liniger equation of state accurately describes the zero-temperature universal properties of a dilute one-dimensional Bose gas in terms of the s-wave scattering length. For weakly-interacting bosons we derive non-universal corrections to this equation of state taking into account finite-range effects of the inter-atomic potential. Within the finite-temperature formalism of functional integration we find a beyond-mean-field equation of state which depends on scattering length and effective range of the interaction potential. Our analytical results, which are obtained performing dimensional regularization of divergent zero-point quantum fluctuations, show that for the one-dimensional Bose gas thermodynamic quantities like pressure and sound velocity are modified by changing the ratio between the effective range and the scattering length.Comment: 6 pages, 2 figures, accepted for publication in Physical Review

    Correlation of the rate of Type Ia supernovae with the parent galaxy properties: Light and shadows

    Get PDF
    The identification of the progenitors of Type Ia Supernovae (SNIa) is extremely important in several astrophysical contexts, ranging from stellar evolution in close binary systems to evaluating cosmological parameters. Determining the distribution of the delay times (DTD) of SNIa progenitors can shed light on their nature. In this paper we investigate on the diagnostic capabilities on the DTD of the correlation between the SNIa rate and the parent galaxy properties by examining its systematics with the various parameters at play: simple stellar population models, the adopted description for the star formation history in galaxies, and the way in which the masses of the galaxies are evaluated. We compute models for the correlations of the SNIa rate with the parent galaxy color and specific star formation rate for a variety of input ingredients, and for a few astrophysically motivated DTD laws. The models are compared to the results of three independent observational surveys. We find that the scaling of the SNIa rate with the properties of the parent galaxy is sensitive to all input ingredients mentioned above. This is a severe limitation on the possibility to discriminate alternative DTDs. In addition, current surveys show some discrepancies for the rate measured in the reddest and bluest galaxies, likely due to limited statistics and inhomogeneity of the observations. For galaxies with intermediate colors the rates are in agreement, leading to a robust determination of the productivity of SNIa from stellar populations of \simeq 0.8 events per 1000 \msun. Large stastistics of SNIa events along with accurate measurements of the star formation history in the galaxies are required to derive firm constraints on the DTD. LSST will achieve these results by providing the homogeneous, unbiased and vast database on both SNIa and galaxies.Comment: Astronomy and Astrophysics in press. Includes one more figure in the appendix. Notice the slight change of titl

    Mixed-state quantum transport in correlated spin networks

    Full text link
    Quantum spin networks can be used to transport information between separated registers in a quantum information processor. To find a practical implementation, the strict requirements of ideal models for perfect state transfer need to be relaxed, allowing for complex coupling topologies and general initial states. Here we analyze transport in complex quantum spin networks in the maximally mixed state and derive explicit conditions that should be satisfied by propagators for perfect state transport. Using a description of the transport process as a quantum walk over the network, we show that it is necessary to phase correlate the transport processes occurring along all the possible paths in the network. We provide a Hamiltonian that achieves this correlation, and use it in a constructive method to derive engineered couplings for perfect transport in complicated network topologies

    Experimentally efficient methods for estimating the performance of quantum measurements

    Full text link
    Efficient methods for characterizing the performance of quantum measurements are important in the experimental quantum sciences. Ideally, one requires both a physically relevant distinguishability measure between measurement operations and a well-defined experimental procedure for estimating the distinguishability measure. Here, we propose the average measurement fidelity and error between quantum measurements as distinguishability measures. We present protocols for obtaining bounds on these quantities that are both estimable using experimentally accessible quantities and scalable in the size of the quantum system. We explain why the bounds should be valid in large generality and illustrate the method via numerical examples.Comment: 20 pages, 1 figure. Expanded details and typos corrected. Accepted versio

    Spatial noise filtering through error correction for quantum sensing

    Get PDF
    Quantum systems can be used to measure various quantities in their environment with high precision. Often, however, their sensitivity is limited by the decohering effects of this same environment. Dynamical decoupling schemes are widely used to filter environmental noise from signals, but their performance is limited by the spectral properties of the signal and noise at hand. Quantum error correction schemes have therefore emerged as a complementary technique without the same limitations. To date, however, they have failed to correct the dominant noise type in many quantum sensors, which couples to each qubit in a sensor in the same way as the signal. Here we show how quantum error correction can correct for such noise, which dynamical decoupling can only partially address. Whereas dynamical decoupling exploits temporal noise correlations in signal and noise, our scheme exploits spatial correlations. We give explicit examples in small quantum devices and demonstrate a method by which error-correcting codes can be tailored to their noise.Comment: 8 pages, 2 figures, RevTeX 4.1. v2: Updated to match published versio
    corecore