145 research outputs found

    Nutrition and Rheumatoid Arthritis Onset: A Prospective Analysis Using the UK Biobank

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease that affects the joints. The multifactorial etiopathogenesis of RA has been heavily investigated, but is still only partially understood. Diet can represent both a risk factor and a protective factor, based on some evidence that suggests specific properties of certain foods and their ability to increase/reduce inflammation. To date, the studies done on this topic provide discordant results and are heterogeneous in terms of design and cohort size. In this work, we investigated for the first time the relationship between nutrition and the risk of RA onset using a sample size of about half a million subjects from one of the largest publicly available biobanks that is the UK biobank. Results showed that oily fish, alcohol, coffee and breakfast cereals have protective roles in RA; whereas, tea can increase the risk of RA. In conclusion, the obtained results confirm that diet plays key roles in RA, either by promoting or by preventing RA onset and development. Future research should focus on unravelling the effects of dietary habits on immune-mediated diseases to establish better preventive strategies

    Invasive fungal diseases in haematopoietic cell transplant recipients and in patients with acute myeloid leukaemia or myelodysplasia in Brazil

    Get PDF
    AbstractInvasive fungal disease (IFD) shows distinct regional incidence patterns and epidemiological features depending on the geographic region. We conducted a prospective survey in eight centres in Brazil from May 2007 to July 2009. All haematopoietic cell transplant (HCT) recipients and patients with acute myeloid leukaemia (AML) or myelodysplasia (MDS) were followed from admission until 1 year (HCT) or end of consolidation therapy (AML/MDS). The 12-month cumulative incidence (CI) of proven or probable IFD was calculated, and curves were compared using the Grey test. Among 237 AML/MDS patients and 700 HCT recipients (378 allogeneic, 322 autologous), the 1-year CI of IFD in AML/MDS, allogeneic HCT and autologous HCT was 18.7%, 11.3% and 1.9% (p <0.001), respectively. Fusariosis (23 episodes), aspergillosis (20 episodes) and candidiasis (11 episodes) were the most frequent IFD. The 1-year CI of aspergillosis and fusariosis in AML/MDS, allogeneic HCT and autologous HCT were 13.4%, 2.3% and 0% (p <0.001), and 5.2%, 3.8% and 0.6% (p 0.01), respectively. The 6-week probability of survival was 53%, and was lower in cases of fusariosis (41%). We observed a high burden of IFD and a high incidence and mortality for fusariosis in this first multicentre epidemiological study of IFD in haematological patients in Brazil

    Skin dendritic cells in melanoma are key for successful checkpoint blockade therapy.

    Get PDF
    BACKGROUND: Immunotherapy with checkpoint inhibitors has shown impressive results in patients with melanoma, but still many do not benefit from this line of treatment. A lack of tumor-infiltrating T cells is a common reason for therapy failure but also a loss of intratumoral dendritic cells (DCs) has been described. METHODS: We used the transgenic tg(Grm1)EPv melanoma mouse strain that develops spontaneous, slow-growing tumors to perform immunological analysis during tumor progression. With flow cytometry, the frequencies of DCs and T cells at different tumor stages and the expression of the inhibitory molecules programmed cell death protein-1 (PD-1) and T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) on T cells were analyzed. This was complemented with RNA-sequencing (RNA-seq) and real-time quantitative PCR (RT-qPCR) analysis to investigate the immune status of the tumors. To boost DC numbers and function, we administered Fms-related tyrosine 3 ligand (Flt3L) plus an adjuvant mix of polyI:C and anti-CD40. To enhance T cell function, we tested several checkpoint blockade antibodies. Immunological alterations were characterized in tumor and tumor-draining lymph nodes (LNs) by flow cytometry, CyTOF, microarray and RT-qPCR to understand how immune cells can control tumor growth. The specific role of migratory skin DCs was investigated by coculture of sorted DC subsets with melanoma-specific CD8+ T cells. RESULTS: Our study revealed that tumor progression is characterized by upregulation of checkpoint molecules and a gradual loss of the dermal conventional DC (cDC) 2 subset. Monotherapy with checkpoint blockade could not restore antitumor immunity, whereas boosting DC numbers and activation increased tumor immunogenicity. This was reflected by higher numbers of activated cDC1 and cDC2 as well as CD4+ and CD8+ T cells in treated tumors. At the same time, the DC boost approach reinforced migratory dermal DC subsets to prime gp100-specific CD8+ T cells in tumor-draining LNs that expressed PD-1/TIM-3 and produced interferon γ (IFNγ)/tumor necrosis factor α (TNFα). As a consequence, the combination of the DC boost with antibodies against PD-1 and TIM-3 released the brake from T cells, leading to improved function within the tumors and delayed tumor growth. CONCLUSIONS: Our results set forth the importance of skin DC in cancer immunotherapy, and demonstrates that restoring DC function is key to enhancing tumor immunogenicity and subsequently responsiveness to checkpoint blockade therapy

    Decreased Gas6 and sAxl Plasma Levels Are Associated with Hair Loss in COVID-19 Survivors

    Get PDF
    : Post-acute conditions after coronavirus disease 2019 (COVID-19) are quite common, although the underlying pathogenetic mechanisms leading to these conditions are not yet completely understood. In this prospective observational study, we aimed to test the hypothesis that Growth Arrest-Specific 6 (Gas6) and its soluble receptors, Axl (sAxl) and MerTK (sMer), might be implicated. A total of 263 subjects underwent a structured clinical evaluation one year after their hospital discharge for COVID-19, and they consented to donate a blood sample to measure their circulating Gas6, sAxl, and sMer levels. A total of 98 (37.3%) post-COVID-19 subjects complained of at least one residual physical symptom one year after their hospital discharge. Univariate analysis revealed that sAxl was marginally associated with residual symptoms, but at the level of logistic regression analysis, only the diffusing capacity of the lungs for carbon monoxide (DLCO) (OR 0.98, CI 95%: 0.96-0.99; p = 0.007) and the female sex (OR 2.49, CI 95%: 1.45-4.28; p = 0.001) were independently associated with long-lasting symptoms. A total of 69 (26.2%) subjects had hair loss. At the level of univariate analysis, Gas6, sAxl, DLCO, and the female gender were associated with its development. In a logistic regression analysis model, Gas6 (OR 0.96, CI 95%: 0.92-0.99; p = 0.015) and sAxl (OR 0.98, CI 95%; 0.97-1.0; p = 0.014), along with the female sex (OR 6.58, CI 95%: 3.39-12.78; p = 0.0001), were independent predictors of hair loss. Decreased levels of Gas6 and sAxl were associated with a history of hair loss following COVID-19. This was resolved spontaneously in most patients, although 23.7% complained of persistent hair loss one year after hospital discharge

    The role of public authorities in supporting regional innovation ecosystems: the cases of San Diego and Boston regions (USA)

    No full text
    The EU has recently recognised the crucial role of public authorities in promoting the interfaces between innovation actors in order to orchestrate regional innovation ecosystems (EU CoR, 2016). This paper aims to contribute to the body of knowledge of regional innovation policy-making by analysing the role that has been performed by the U.S. public sector in boosting two successful innovation ecosystems, namely the Life Science Clusters of San Diego (CA) and Boston (MA). By adopting a policy monitoring methodology, the paper breaks-down the different policy inputs and processes delivered by the public sector, targeting the two Life Science clusters. We conclude that both the public authorities of Boston and San Diego regions have been pushing for the life science industry agglomeration from an urban planning perspective, while they have been adopting different approaches in promoting the interface between innovation actors. In Boston, the public authorities actively intervene in fostering collaboration and co-creation between the several life science-related firms, through the Mass Life Science Center. In San Diego, the public authorities allow the life science ecosystem to self-organize, leaving the orchestration role to not-for-profit organizations, such as CONNECT and BIOCO
    • …
    corecore