10 research outputs found

    A One-Step Real-Time Multiplex PCR for Screening Y-Chromosomal Microdeletions without Downstream Amplicon Size Analysis

    Get PDF
    BACKGROUND: Y-chromosomal microdeletions (YCMD) are one of the major genetic causes for non-obstructive azoospermia. Genetic testing for YCMD by multiplex polymerase chain reaction (PCR) is an established method for quick and robust screening of deletions in the AZF regions of the Y-chromosome. Multiplex PCRs have the advantage of including a control gene in every reaction and significantly reducing the number of reactions needed to screen the relevant genomic markers. PRINCIPAL FINDINGS: The widely established "EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions (2004)" were used as a basis for designing a real-time multiplex PCR system, in which the YCMD can simply be identified by their melting points. For this reason, some AZF primers were substituted by primers for regions in their genomic proximity, and the ZFX/ZFY control primer was exchanged by the AMELX/AMELY control primer. Furthermore, we substituted the classical SybrGreen I dye by the novel and high-performing DNA-binding dye EvaGreen™ and put substantial effort in titrating the primer combinations in respect to optimal melting peak separation and peak size. SIGNIFICANCE: With these changes, we were able to develop a platform-independent and robust real-time based multiplex PCR, which makes the need for amplicon identification by electrophoretic sizing expendable. By using an open-source system for real-time PCR analysis, we further demonstrate the applicability of automated melting point and YCMD detection

    Novel epididymis-specific mRNAs downregulated by HE6/Gpr64 receptor gene disruption.

    No full text
    Targeted disruption of the epididymis-specific HE6/Gpr64 receptor gene in mice led to male infertility. In order to characterize the phenotype at a molecular level, we compared the gene expression patterns of wild type (wt) versus knockout (KO) caput epididymides. The caput region of KO males, although morphologically normal, nevertheless showed an aberrant expression pattern. Combining micro array analysis, differential library screening, Northern blot analysis and quantitative RT-PCR, we found that the knockout of the HE6/Gpr64 receptor was mainly associated with the downregulation of genes specific to the initial segment. The list of KO downregulated transcripts comprised Enpp2/autotaxin, the lipocalins 8 and 9, the beta-defensin Defb42, cystatins 8 and 12, as well as the membrane proteins Adam (A Disintegrin And Metalloprotease) 28, claudin-10, EAAC1, and the novel Me9. Clusterin/ApoJ and osteopontin/Spp1 mRNAs, on the other hand, were upregulated in the KO tissues. The Me9 transcript was studied in further detail, and we report here a cluster of related epididymis-specific genes. Me9 is specifically expressed in the initial segment and is representative of a novel and highly conserved mammalian gene family. The family consists of single-exon genes only; intron-containing paralogs have not yet been ascertained. The cloned cDNA sequences predicted hydrophobic polytopic membrane proteins containing the DUF716 motif. Protein expression was shown in the rodent caput epididymidis but remained uncertain in primates
    corecore