653 research outputs found

    Open strings with topologically inspired boundary conditions

    Full text link
    We consider an open string described by an action of the Dirac-Nambu-Goto type with topological corrections which affect the boundary conditions but not the equations of motion. The most general addition of this kind is a sum of the Gauss-Bonnet action and the first Chern number (when the background spacetime dimension is four) of the normal bundle to the string worldsheet. We examine the modification introduced by such terms in the boundary conditions at the ends of the string.Comment: 12 pages, late

    Deformations of extended objects with edges

    Full text link
    We present a manifestly gauge covariant description of fluctuations of a relativistic extended object described by the Dirac-Nambu-Goto action with Dirac-Nambu-Goto loaded edges about a given classical solution. Whereas physical fluctuations of the bulk lie normal to its worldsheet, those on the edge possess an additional component directed into the bulk. These fluctuations couple in a non-trivial way involving the underlying geometrical structures associated with the worldsheet of the object and of its edge. We illustrate the formalism using as an example a string with massive point particles attached to its ends.Comment: 17 pages, revtex, to appear in Phys. Rev. D5

    Hamiltonian dynamics of extended objects

    Full text link
    We consider a relativistic extended object described by a reparametrization invariant local action that depends on the extrinsic curvature of the worldvolume swept out by the object as it evolves. We provide a Hamiltonian formulation of the dynamics of such higher derivative models which is motivated by the ADM formulation of general relativity. The canonical momenta are identified by looking at boundary behavior under small deformations of the action; the relationship between the momentum conjugate to the embedding functions and the conserved momentum density is established. The canonical Hamiltonian is constructed explicitly; the constraints on the phase space, both primary and secondary, are identified and the role they play in the theory described. The multipliers implementing the primary constraints are identified in terms of the ADM lapse and shift variables and Hamilton's equations shown to be consistent with the Euler-Lagrange equations.Comment: 24 pages, late

    Neighbours of Einstein's Equations: Connections and Curvatures

    Full text link
    Once the action for Einstein's equations is rewritten as a functional of an SO(3,C) connection and a conformal factor of the metric, it admits a family of ``neighbours'' having the same number of degrees of freedom and a precisely defined metric tensor. This paper analyzes the relation between the Riemann tensor of that metric and the curvature tensor of the SO(3) connection. The relation is in general very complicated. The Einstein case is distinguished by the fact that two natural SO(3) metrics on the GL(3) fibers coincide. In the general case the theory is bimetric on the fibers.Comment: 16 pages, LaTe

    A Chiral Perturbation Expansion for Gravity

    Full text link
    A formulation of Einstein gravity, analogous to that for gauge theory arising from the Chalmers-Siegel action, leads to a perturbation theory about an asymmetric weak coupling limit that treats positive and negative helicities differently. We find power counting rules for amplitudes that suggest the theory could find a natural interpretation in terms of a twistor-string theory for gravity with amplitudes supported on holomorphic curves in twistor space.Comment: 11 pages, LaTeX, no figures; v2: one reference adde

    Hamilton's equations for a fluid membrane: axial symmetry

    Full text link
    Consider a homogenous fluid membrane, or vesicle, described by the Helfrich-Canham energy, quadratic in the mean curvature. When the membrane is axially symmetric, this energy can be viewed as an `action' describing the motion of a particle; the contours of equilibrium geometries are identified with particle trajectories. A novel Hamiltonian formulation of the problem is presented which exhibits the following two features: {\it (i)} the second derivatives appearing in the action through the mean curvature are accommodated in a natural phase space; {\it (ii)} the intrinsic freedom associated with the choice of evolution parameter along the contour is preserved. As a result, the phase space involves momenta conjugate not only to the particle position but also to its velocity, and there are constraints on the phase space variables. This formulation provides the groundwork for a field theoretical generalization to arbitrary configurations, with the particle replaced by a loop in space.Comment: 11 page

    Remarks on Conserved Quantities and Entropy of BTZ Black Hole Solutions. Part II: BCEA Theory

    Full text link
    The BTZ black hole solution for (2+1)-spacetime is considered as a solution of a triad-affine theory (BCEA) in which topological matter is introduced to replace the cosmological constant in the model. Conserved quantities and entropy are calculated via Noether theorem, reproducing in a geometrical and global framework earlier results found in the literature using local formalisms. Ambiguities in global definitions of conserved quantities are considered in detail. A dual and covariant Legendre transformation is performed to re-formulate BCEA theory as a purely metric (natural) theory (BCG) coupled to topological matter. No ambiguities in the definition of mass and angular momentum arise in BCG theory. Moreover, gravitational and matter contributions to conserved quantities and entropy are isolated. Finally, a comparison of BCEA and BCG theories is carried out by relying on the results obtained in both theories.Comment: PlainTEX, 20 page

    Geometry of lipid vesicle adhesion

    Full text link
    The adhesion of a lipid membrane vesicle to a fixed substrate is examined from a geometrical point of view. This vesicle is described by the Helfrich hamiltonian quadratic in mean curvature; it interacts by contact with the substrate, with an interaction energy proportional to the area of contact. We identify the constraints on the geometry at the boundary of the shared surface. The result is interpreted in terms of the balance of the force normal to this boundary. No assumptions are made either on the symmetry of the vesicle or on that of the substrate. The strong bonding limit as well as the effect of curvature asymmetry on the boundary are discussed.Comment: 7 pages, some major changes in sections III and IV, version published in Physical Review

    No New Symmetries of the Vacuum Einstein Equations

    Get PDF
    In this note we examine some recently proposed solutions of the linearized vacuum Einstein equations. We show that such solutions are {\it not} symmetries of the Einstein equations, because of a crucial integrability condition.Comment: 9 pages, Te

    The one-loop elastic coefficients for the Helfrich membrane in higher dimensions

    Full text link
    Using a covariant geometric approach we obtain the effective bending couplings for a 2-dimensional rigid membrane embedded into a (2+D)(2+D)-dimensional Euclidean space. The Hamiltonian for the membrane has three terms: The first one is quadratic in its mean extrinsic curvature. The second one is proportional to its Gaussian curvature, and the last one is proportional to its area. The results we obtain are in agreement with those finding that thermal fluctuations soften the 2-dimensional membrane embedded into a 3-dimensional Euclidean space.Comment: 9 page
    • …
    corecore