29 research outputs found

    Life-threatening asthma attack during prolonged fingolimod treatment: case report

    No full text
    Chiara Zecca,1,* Matteo Caporro,1,* Sandor Györik,2 Claudio Gobbi11Neurocenter of Southern Switzerland, Department of Neurology, Ospedale Regionale di Lugano, Lugano, Switzerland; 2Department of Internal Medicine, Ospedale Regionale di Bellinzona, Bellinzona, Switzerland*These authors contributed equally to this workBackground: Fingolimod (FTY) mediates bronchoconstriction by interacting with sphingosine-1-phosphate receptors. The majority of the reported adverse respiratory events occur during the first weeks of treatment.Case presentation: A 49-year-old woman developed a life-threatening asthma attack after 6 months of continuous FTY treatment. The adverse event required prolonged hospitalization, and the patient recovered without sequelae after FTY interruption. A history of previous airway hyperreactivity and a concurrent viral respiratory infection possibly acted as predisposing factors.Conclusion: This first description of a severe, life-threatening asthma attack during prolonged FTY treatment suggests the need for long-term clinical surveillance, especially in patients with known predisposing factors.Keywords: multiple sclerosis, bronchial hyper-reactivit

    Two decades of subcutaneous glatiramer acetate injection: current role of the standard dose, and new high-dose low-frequency glatiramer acetate in relapsing–remitting multiple sclerosis treatment

    No full text
    Matteo Caporro, Giulio Disanto, Claudio Gobbi, Chiara Zecca Neurocenter of Southern Switzerland, Ospedale Regionale di Lugano, Lugano, Switzerland Abstract: Glatiramer acetate, a synthetic amino acid polymer analog of myelin basic protein, is one of the first approved drugs for the treatment of relapsing–remitting multiple sclerosis. Several clinical trials have shown consistent and sustained efficacy of glatiramer acetate 20 mg subcutaneously daily in reducing relapses and new demyelinating lesions on magnetic resonance imaging in patients with relapsing–remitting multiple sclerosis, as well as comparable efficacy to high-dose interferon beta. Some preclinical and clinical data suggest a neuroprotective role for glatiramer acetate in multiple sclerosis. Glatiramer acetate is associated with a relatively favorable side-effect profile, and importantly this was confirmed also during long-term use. Glatiramer acetate is the only multiple sclerosis treatment compound that has gained the US Food and Drug Administration pregnancy category B. All these data support its current use as a first-line treatment option for patients with clinical isolated syndrome or relapsing–remitting multiple sclerosis. More recent data have shown that high-dose glatiramer acetate (ie, 40 mg) given three times weekly is effective, safe, and well tolerated in the treatment of relapsing–remitting multiple sclerosis, prompting the approval of this dosage in the US in early 2014.This high-dose, lower-frequency glatiramer acetate might represent a new, more convenient regimen of administration, and this might enhance patients’ adherence to the treatment, crucial for optimal disease control. Keywords: glatiramer acetate, disease modifying treatment, efficacy, safet

    Functional MRI of sleep spindles and K-complexes

    No full text
    Objective: Sleep spindles and K-complexes are EEG hallmarks of non-REM sleep. However, the brain regions generating these discharges and the functional connections of their generators to other regions are not fully known. We investigated the neuroanatomical correlates of spindles and K-complexes using simultaneous EEG and fMRI. Methods: EEGs recorded during EEG-fMRI studies of 7 individuals were used for fMRI analysis. Higher-level group analyses were performed, and images were thresholded at Z >= 2.3. Results: fMRI of 106 spindles and 60 K-complexes was analyzed. Spindles corresponded to increased signal in thalami and posterior cingulate, and right precuneus, putamen, paracentral cortex, and temporal lobe. K-complexes corresponded to increased signal in thalami, superior temporal lobes, paracentral gyri, and medial regions of the occipital, parietal and frontal lobes. Neither corresponded to regions of decreased signal. Conclusions: fMRI of both spindles and K-complexes depicts signal subjacent to the vertex, which likely indicates each discharges' source. The thalamic signal is consistent with thalamic involvement in sleep homeostasis. The limbic region's signal is consistent with roles in memory consolidation. Unlike the spindle, the K-complex corresponds to extensive signal in primary sensory cortices. Significance: Identification of these active regions contributes to the understanding of sleep networks and the physiology of awareness and memory during sleep. (C) 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved
    corecore