23 research outputs found
Sex Difference and Benzene Exposure: Does It Matter?
Sex-related biological differences might lead to different effects in women and men when they are exposed to risk factors. A scoping review was carried out to understand if sex could be a discriminant in health outcomes due to benzene. Studies on both animals and humans were collected. In vivo surveys, focusing on genotoxicity, hematotoxicity and effects on metabolism suggested a higher involvement of male animals (mice or rats) in adverse health effects. Conversely, the studies on humans, focused on the alteration of blood parameters, myeloid leukemia incidence and biomarker rates, highlighted that, overall, women had significantly higher risk for blood system effects and a metabolization of benzene 23-26% higher than men, considering a similar exposure situation. This opposite trend highlights that the extrapolation of in vivo findings to human risk assessment should be taken with caution. However, it is clear that sex is a physiological parameter to consider in benzene exposure and its health effects. The topic of sex difference linked to benzene in human exposure needs further research, with more numerous samples, to obtain a higher strength of data and more indicative findings. Sex factor, and gender, could have significant impacts on occupational exposures and their health effects, even if there are still uncertainties and gaps that need to be filled
MiR-23-TrxR1 as a novel molecular axis in skeletal muscle differentiation
Thioredoxin reductase 1 (TrxR1) is a selenocysteine-containing protein involved in cellular redox homeostasis which is downregulated in skeletal muscle differentiation. Here we show that TrxR1 decrease occurring during myogenesis is functionally involved in the coordination of this cellular process. Indeed, TrxR1 depletion reduces myoblasts growth by inducing an early myogenesis -related gene expression pattern which includes myogenin and Myf5 up-regulation and Cyclin D1 decrease. On the contrary, the overexpression of TrxR1 during differentiation delays myogenic process, by negatively affecting the expression of Myogenin and MyHC. Moreover, we found that miR-23a and miR-23b - whose expression was increased in the early stage of C2C12 differentiation - are involved in the regulation of TrxR1 expression through their direct binding to the 3′ UTR of TrxR1 mRNA. Interestingly, the forced inhibition of miR-23a and miR-23b during C2C12 differentiation partially rescues TrxR1 levels and delays the expression of myogenic markers, suggesting the involvement of miR-23 in myogenesis via TrxR1 repression. Taken together, our results depict for the first time a novel molecular axis, which functionally acts in skeletal muscle differentiation through the modulation of TrxR1 by miR-23
Sam68 splicing regulation contributes to motor unit establishment in the postnatal skeletal muscle
RNA-binding proteins orchestrate the composite life of RNA molecules and impact most physiological processes, thus underlying complex phenotypes. The RNA-binding protein Sam68 regulates differentiation processes by modulating splicing, polyadenylation, and stability of select transcripts. Herein, we found that Sam68-/- mice display altered regulation of alternative splicing in the spinal cord of key target genes involved in synaptic functions. Analysis of the motor units revealed that Sam68 ablation impairs the establishment of neuromuscular junctions and causes progressive loss of motor neurons in the spinal cord. Importantly, alterations of neuromuscular junction morphology and properties in Sam68-/- mice correlate with defects in muscle and motor unit integrity. Sam68-/- muscles display defects in postnatal development, with manifest signs of atrophy. Furthermore, fast-twitch muscles in Sam68-/- mice show structural features typical of slow-twitch muscles, suggesting alterations in the metabolic and functional properties of myofibers. Collectively, our data identify a key role for Sam68 in muscle development and suggest that proper establishment of motor units requires timely expression of synaptic splice variants
Organisation d'un cabinet d'orthodontie
AIX-MARSEILLE2-BU Méd/Odontol. (130552103) / SudocSudocFranceF
From Environmental to Possible Occupational Exposure to Risk Factors: What Role Do They Play in the Etiology of Endometriosis?
Endometriosis is a gynecological disorder characterized by the presence of endometrial stroma and glands outside the uterine cavity. A systematic review of the literature was conducted to clarify, starting from environmental exposure data, whether possible occupational risk factors may correlate with the onset of the disease. The guidelines for reporting systematic reviews of the “PRISMA” statement were followed and two databases, Scopus and PubMed, were used. Of the 422 studies selected with specific keywords, 32 publications were eligible, 28 of which referred to chemical agents and 4 related to night work. Conflicting data emerged among these studies. Although some compounds seemed to be more involved than others in the onset of endometriosis. Association with exposure to organochlorine compounds is the most supported by the epidemiological data, while other pesticide exposure did not show any clear correlation. Likewise, the hypothesis of a correlation with perfluoroalkyls exposure is not currently supported by data. The involvement of metals as risk factors has not been confirmed, while the role of night work, in the case of long service, seems to play an etiological role. In order to clarify the potential occupational risk of endometriosis development, well-designed studies are needed to evaluate the potential association between chemical compounds and disease etiology
Post-transcriptional regulation of FUS and EWS protein expression by miR-141 during neural differentiation
Brain development involves proliferation, migration and specification of neural progenitor cells, culminating in neuronal circuit formation. Mounting evidence indicates that improper regulation of RNA binding proteins (RBPs), including members of the FET (FUS, EWS, TAF15) family, results in defective cortical development and/or neurodegenerative disorders. However, in spite of their physiological relevance, the precise pattern of FET protein expression in developing neurons is largely unknown. Herein, we found that FUS, EWS and TAF15 expression is differentially regulated during brain development, both in time and in space. In particular, our study identifies a fine-tuned regulation of FUS and EWS during neuronal differentiation, whereas TAF15 appears to be more constitutively expressed. Mechanistically FUS and EWS protein expression is regulated at the post-transcriptional level during neuron differentiation and brain development. Moreover, we identified miR-141 as a key regulator of these FET proteins that modulate their expression levels in differentiating neuronal cells. Thus, our studies uncover a novel link between post-transcriptional regulation of FET proteins expression and neurogenesis
Il ruolo di Elia Volpi nella vendita delle sculture di Alceo Dossena. Fotografie e lettere inedite
Il contributo analizza il fondo fotografico dell'antiquario fiorentino Elia Volpi focalizzando su di un aspetto particolare: il commercio dei falsi, in particolar modo delle sculture realizzate attorno agli anni Venti del Novecento da Alceo Dossena. Le fotografie rinvenute nel fondo fotografico con sculture di Dossena, assieme alle lettere inviate da Volpi a Wilhelm von Bode, invitano a ripensare il ruolo avuto da Volpi nella vendita delle opere a importanti musei americani
Genotoxic stress inhibits Ewing sarcoma cell growth by modulating alternative pre-mRNA processing of the RNA helicaseDHX9
Alternative splicing plays a key role in the DNA damage response and in cancer. Ewing Sarcomas (ES) are aggressive tumors caused by different chromosomal translocations that yield in-frame fusion proteins driving transformation. RNA profiling reveals genes differentially regulated by UV light irradiation in two ES cell lines exhibiting different sensitivity to genotoxic stress. In particular, irradiation induces a new isoform of the RNA helicase DHX9 in the more sensitive SK-N-MC cells, which is targeted to nonsense-mediated decay (NMD), causing its downregulation. DHX9 protein forms a complex with RNA polymerase II (RNAPII) and EWS-FLI1 to enhance transcription. Silencing of DHX9 in ES cells sensitizes them to UV treatment and impairs recruitment of EWS-FLI1 to target genes, whereas DHX9 overexpression protects ES cells from genotoxic stress. Mechanistically, we found that UV light irradiation leads to enhanced phosphorylation and decreased processivity of RNAPII in SK-N-MC cells, which in turn causes inclusion of DHX9 exon 6A. A similar effect on DHX9 splicing was also elicited by treatment with the chemotherapeutic drug etoposide, indicating a more general mechanism of regulation in response to DNA damage. Our data identify a new NMD-linked splicing event in DHX9 with impact on EWS-FLI1 oncogenic activity and ES cell viability
A Case–Control Study on the Effects of Plasticizers Exposure on Male Fertility
Male infertility is a serious concern for public health, and the possible role of exposure to plasticizers such as phthalates and bisphenol A in contributing to the condition is widely debated. We have herein enrolled 155 infertility cases attending an infertility center and 211 controls (fathers of a spontaneously conceived newborn) to investigate this issue. The urinary levels of seven phthalates and BPA were analyzed through HPLC/MS/MS. All data were statistically elaborated considering information about clinical situation, life habits, occupational activity, and, for cases, semen parameters (volume, sperm concentration, total count of spermatozoa, and sperm motility). Results showed significantly higher urinary concentrations for all the phthalates in cases compared to controls, except for monoethylphthalate and BPA. In total, 90.07% of cases had sperm motility lower than the WHO reference value (2010), while 53.69%, 46.31%, and 16.56% had sperm total number, concentration, and volume, respectively, out of the reference range. Regarding the possible source of exposure, the use of scents seems to be a significant source of DEP (diethylphthalate). When considering occupational settings, industrial workers, dental technicians, artisans, and farmers using chemicals showed higher risk (OR = 2.766, 95% CI 1.236–6.185), particularly in relation to DnBP (di-n-butyl phthalate) and DEHP (di-ethyl-hexyl phthalate) exposure. No clear quantitative correlation between specific plasticizers and sperm parameters could be demonstrated but these findings call for future studies about the risks associated with exposure to their mixture