39 research outputs found

    Defective Nuclear Lamina in Aneuploidy and Carcinogenesis

    Get PDF
    Aneuploidy, loss or gain of whole chromosomes, is a prominent feature of carcinomas, and is generally considered to play an important role in the initiation and progression of cancer. In high-grade serous ovarian cancer, the only common gene aberration is the p53 point mutation, though extensive genomic perturbation is common due to severe aneuploidy, which presents as a deviant karyotype. Several mechanisms for the development of aneuploidy in cancer cells have been recognized, including chromosomal non-disjunction during mitosis, centrosome amplification, and more recently, nuclear envelope rupture at interphase. Many cancer types including ovarian cancer have lost or reduced expression of Lamin A/C, a structural component of the lamina matrix that underlies the nuclear envelope in differentiated cells. Several recent studies suggest that a nuclear lamina defect caused by the loss or reduction of Lamin A/C leads to failure in cytokinesis and formation of tetraploid cells, transient nuclear envelope rupture, and formation of nuclear protrusions and micronuclei during the cell cycle gap phase. Thus, loss and reduction of Lamin A/C underlies the two common features of cancer—aberrations in nuclear morphology and aneuploidy. We discuss here and emphasize the newly recognized mechanism of chromosomal instability due to the rupture of a defective nuclear lamina, which may account for the rapid genomic changes in carcinogenesis

    Alteration of Differentiation Potentials by Modulating GATA Transcription Factors in Murine Embryonic Stem Cells

    Get PDF
    Background. Mouse embryonic stem (ES) cells can be differentiated in vitro by aggregation and/or retinoic acid (RA) treatment. The principal differentiation lineage in vitro is extraembryonic primitive endoderm. Dab2, Laminin, GATA4, GATA5, and GATA6 are expressed in embryonic primitive endoderm and play critical roles in its lineage commitment. Results. We found that in the absence of GATA4 or GATA5, RA-induced primitive endoderm differentiation of ES cells was reduced. GATA4 (−/−) ES cells express higher level of GATA5, GATA6, and hepatocyte nuclear factor 4 alpha marker of visceral endoderm lineage. GATA5 (−/−) ES cells express higher level of alpha fetoprotein marker of early liver development. GATA6 (−/−) ES cells express higher level of GATA5 as well as mesoderm and cardiomyocyte markers which are collagen III alpha-1 and tropomyosin1 alpha. Thus, deletion of GATA6 precluded endoderm differentiation but promoted mesoderm lineages. Conclusions. GATA4, GATA5, and GATA6 each convey a unique gene expression pattern and influences ES cell differentiation. We showed that ES cells can be directed to avoid differentiating into primitive endoderm and to adopt unique lineages in vitro by modulating GATA factors. The finding offers a potential approach to produce desirable cell types from ES cells, useful for regenerative cell therapy

    Perception of differentiation cues by GATA factors in primitive endoderm lineage determination of mouse embryonic stem cells

    Get PDF
    AbstractThe formation of the primitive endoderm covering the inner cell mass of early mouse embryos can be simulated in vitro by the differentiation of mouse embryonic stem (ES) cells in culture following either aggregation of suspended cells or stimulation of cell monolayers with retinoic acid. The developmentally regulated transcription factors GATA-4 and GATA-6 have determining role in mouse extraembryonic endoderm development. We analyzed the in vitro differentiation of mouse embryonic stem cells deficient of GATA factors and conclude that GATA-4 is required for ES cells to perceive a cell positioning (cell aggregation) signal and GATA-6 is required to sense morphogenic (retinoic acid) signal. The collaboration between GATA-6 and GATA-4, or GATA-6 and GATA-5 which can substitute for GATA-4, is involved in the perception of differentiation cues by embryonic stem cells in their determination of endoderm lineage. This study indicates that the lineage differentiation of ES cells can be manipulated by the expression of GATA factors

    Nuclear envelope structural defects cause chromosomal numerical instability and aneuploidy in ovarian cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite our substantial understanding of molecular mechanisms and gene mutations involved in cancer, the technical approaches for diagnosis and prognosis of cancer are limited. In routine clinical diagnosis of cancer, the procedure is very basic: nuclear morphology is used as a common assessment of the degree of malignancy, and hence acts as a prognostic and predictive indicator of the disease. Furthermore, though the atypical nuclear morphology of cancer cells is believed to be a consequence of oncogenic signaling, the molecular basis remains unclear. Another common characteristic of human cancer is aneuploidy, but the causes and its role in carcinogenesis are not well established.</p> <p>Methods</p> <p>We investigated the expression of the nuclear envelope proteins lamin A/C in ovarian cancer by immunohistochemistry and studied the consequence of lamin A/C suppression using siRNA in primary human ovarian surface epithelial cells in culture. We used immunofluorescence microscopy to analyze nuclear morphology, flow cytometry to analyze cellular DNA content, and fluorescence <it>in situ </it>hybridization to examine cell ploidy of the lamin A/C-suppressed cells.</p> <p>Results</p> <p>We found that nuclear lamina proteins lamin A/C are often absent (47%) in ovarian cancer cells and tissues. Even in lamin A/C-positive ovarian cancer, the expression is heterogeneous within the population of tumor cells. In most cancer cell lines, a significant fraction of the lamin A/C-negative population was observed to intermix with the lamin A/C-positive cells. Down regulation of lamin A/C in non-cancerous primary ovarian surface epithelial cells led to morphological deformation and development of aneuploidy. The aneuploid cells became growth retarded due to a p53-dependent induction of the cell cycle inhibitor p21.</p> <p>Conclusions</p> <p>We conclude that the loss of nuclear envelope structural proteins, such as lamin A/C, may underlie two of the hallmarks of cancer - aberrations in nuclear morphology and aneuploidy.</p

    Overexpression and cytoplasmic localization of caspase-6 is associated with lamin A degradation in set of ovarian cancers

    No full text
    Abstract Background In most women with ovarian cancer, the diagnosis occurs after dissemination of tumor cells beyond ovaries. Several molecular perturbations occur ahead of tumor initiation including loss of lamin A/C. Our hypothesis was that the loss of nuclear structural proteins A type lamins (lamin A/C) transcribed from LMNA gene and substrate for active caspase-6 maybe one of the molecular perturbations. Our objective is to investigate the association between the loss of lamin A/C and the overexpression of caspase-6 in ovarian cancer cells. Method Western blotting and immunofluorescence were used to analyze the expression of lamin A/C and active caspase-6 in normal human ovarian surface epithelial (HOSE) cells, immortalized human ovarian surface epithelial cells and a set of seven ovarian cancer cell lines (including OVCAR3, OVCAR5, and A2780). The activity of caspase-6 was measured by densitometry, fluorescence and flow cytometry. Immunohistochemistry was used to evaluate the expression of caspase-6 in set of ovarian cancer tissues previously reported to have lost lamin A/C. Results The results showed that HOSE cells expressed lamin A/C and no or low level of active caspase-6 while cancer cells highly expressed caspase-6 and no or low level of lamin A/C. The inhibition of caspase-6 activity in OVCAR3 cells increased lamin A but has no effect on lamin C; active caspase-6 was localized in the cytoplasm associated with the loss of lamin A. Conclusion Overexpression and cytoplasmic localization of caspase-6 in ovarian cancer cells may be involved in lamin A degradation and deficiency observed in some ovarian cancer cells

    Defective Nuclear Lamina in Aneuploidy and Carcinogenesis

    No full text
    Aneuploidy, loss or gain of whole chromosomes, is a prominent feature of carcinomas, and is generally considered to play an important role in the initiation and progression of cancer. In high-grade serous ovarian cancer, the only common gene aberration is the p53 point mutation, though extensive genomic perturbation is common due to severe aneuploidy, which presents as a deviant karyotype. Several mechanisms for the development of aneuploidy in cancer cells have been recognized, including chromosomal non-disjunction during mitosis, centrosome amplification, and more recently, nuclear envelope rupture at interphase. Many cancer types including ovarian cancer have lost or reduced expression of Lamin A/C, a structural component of the lamina matrix that underlies the nuclear envelope in differentiated cells. Several recent studies suggest that a nuclear lamina defect caused by the loss or reduction of Lamin A/C leads to failure in cytokinesis and formation of tetraploid cells, transient nuclear envelope rupture, and formation of nuclear protrusions and micronuclei during the cell cycle gap phase. Thus, loss and reduction of Lamin A/C underlies the two common features of cancer—aberrations in nuclear morphology and aneuploidy. We discuss here and emphasize the newly recognized mechanism of chromosomal instability due to the rupture of a defective nuclear lamina, which may account for the rapid genomic changes in carcinogenesis

    Nuclear envelope structural defect underlies the main cause of aneuploidy in ovarian carcinogenesis

    No full text
    The Cancer Atlas project has shown that p53 is the only commonly (96 %) mutated gene found in high-grade serous epithelial ovarian cancer, the major histological subtype. Another general genetic change is extensive aneuploidy caused by chromosomal numerical instability, which is thought to promote malignant transformation. Conventionally, aneuploidy is thought to be the result of mitotic errors and chromosomal nondisjunction during mitosis. Previously, we found that ovarian cancer cells often lost or reduced nuclear lamina proteins lamin A/C, and suppression of lamin A/C in cultured ovarian epithelial cells leads to aneuploidy. Following up, we investigated the mechanisms of lamin A/C-suppression in promoting aneuploidy and synergy with p53 inactivation. We found that suppression of lamin A/C by siRNA in human ovarian surface epithelial cells led to frequent nuclear protrusions and formation of micronuclei. Lamin A/C-suppressed cells also often underwent mitotic failure and furrow regression to form tetraploid cells, which frequently underwent aberrant multiple polar mitosis to form aneuploid cells. In ovarian surface epithelial cells isolated from p53 null mice, transient suppression of lamin A/C produced massive aneuploidy with complex karyotypes, and the cells formed malignant tumors when implanted in mice. Based on the results, we conclude that a nuclear envelope structural defect, such as the loss or reduction of lamin A/C proteins, leads to aneuploidy by both the formation of tetraploid intermediates following mitotic failure, and the reduction of chromosome (s) following nuclear budding and subsequent loss of micronuclei. We suggest that the nuclear envelope defect, rather than chromosomal unequal distribution during cytokinesis, is the main cause of aneuploidy in ovarian cancer development

    Increased expression of Syne1/nesprin-1 facilitates nuclear envelope structure changes in embryonic stem cell differentiation

    No full text
    We found by electron microscopy that the inter-membrane space of embryonic stem cells is irregular and generally wider than in differentiated cells. Among a panel of nuclear envelope structural proteins examined, the expression of Syne1/nesprin-1 was found to be greatly induced upon differentiation. Down-regulation of Syne1 by siRNA in differentiated embryonic stem cells caused the nuclear envelope to adopt a configuration resembling that found in undifferentiated embryonic stem cells. Suppression of Syne1 expression did not produce a detectable impact on the retinoic acid-induced differentiation of embryonic stem cells; however, forced expression of Syne1 enhanced the tendency of the cells to lose pluripotency. Thus, we found that low expression of Syne1 splicing isoforms accounts for the wider and irregular nuclear envelope inter-membrane space in embryonic stem cells. We conclude that the nuclear envelope structural change accompanying differentiation likely participates in promoting the differential chromatin organization of the differentiated cells

    Ectopic expression of GATA6 bypasses requirement for Grb2 in primitive endoderm formation

    No full text
    Gene knockouts in mice have showed that Grb2 and GATA6 are essential for the formation of primitive endoderm in blastocysts. Here, we confirmed that implanted Grb2-null blastocysts lack primitive or extraembryonic endoderm cells either at E4.5 or E5.5 stages. We analyzed the relationship between Grb2 and GATA6 in the differentiation of embryonic stem (ES) cells to primitive endoderm in embryoid body models. Upon transfection with GATA6 expression vector, Grb2-null ES cells underwent endoderm differentiation as indicated by the expression of the extraembryonic endoderm markers Dab2 and GATA4. Transfection of GATA4 expression vector also had the same differentiation potency. When GATA6- or GATA4-transfected Grb2-null ES cells were allowed to aggregate, fragments of an endoderm layer formed on the surface of the spheroids. The results suggest that GATA6 is downstream of Grb2 in the inductive signaling pathway and the expression of GATA6 is sufficient to compensate for the defects caused by Grb2 deficiency in the development of the primitive and extraembryonic endoderm
    corecore