19 research outputs found

    Rheumatoid Factor as a Potentiator of Anti–Citrullinated Protein Antibody–Mediated Inflammation in Rheumatoid Arthritis

    Get PDF
    Objective. The co-occurrence of rheumatoid factor (RF) and anti–citrullinated protein antibody (ACPA) positivity in rheumatoid arthritis (RA) is well described. However, the mechanisms underlying the potential interaction between these 2 distinct autoantibodies have not been well defined. The aim of this study was to evaluate the epidemiologic and molecular interaction of ACPAs and RF and its association with both disease activity and measures of RA-associated inflammation. Methods. In a cohort of 1,488 US veterans with RA, measures of disease activity and serum levels of cytokines and multiplex ACPAs were compared between the following groups of patients: double-negative (anti–cyclic citrullinated peptide [anti-CCP]-/RF-), anti-CCP+/RF-, anti-CCP-/RF+, or double-positive (anti-CCP+/RF+). Additional studies were performed using an in vitro immune complex (IC) stimulation assay in which macrophages were incubated with ACPA ICs in the presence or absence of monoclonal IgM-RF, and tumor necrosis factor α production measured as a readout of macrophage activation. Results. Compared with the double-negative subgroup (as well as each single-positive subgroup), the double-positive subgroup exhibited higher disease activity as well as higher levels of C-reactive protein and inflammatory cytokines (all P \u3c 0.001). In vitro stimulation of macrophages by ACPA ICs increased cytokine production, and the addition of monoclonal IgM-RF significantly increased macrophage tumor necrosis factor α production (P = 0.003 versus ACPA ICs alone). Conclusion. The combined presence of ACPAs and IgM-RF mediates increased proinflammatory cytokine production in vitro and is associated with increased systemic inflammation and disease activity in RA. Our data suggest that IgM-RF enhances the capacity of ACPA ICs to stimulate macrophage cytokine production, thereby providing a mechanistic link by which RF enhances the pathogenicity of ACPA ICs in RA

    Salivary Secretory Leukocyte Protease Inhibitor and Oral Candidiasis in Human Immunodeficiency Virus Type 1-Infected Persons

    Get PDF
    Oropharyngeal candidiasis, typically caused by Candida albicans, is the most common oral disease associated with human immunodeficiency virus type 1 (HIV-1) infection. Secretory leukocyte protease inhibitor (SLPI), a 12-kDa antiprotease, suppresses the growth of C. albicans in vitro. To determine whether the mucosal protein plays a role in protecting oral tissues against fungal infection, we conducted a cross-sectional study investigating the oral and systemic health and salivary SLPI levels in 91 dentate HIV-1-infected adults receiving medical care in the southeastern United States. Participants with a self-reported history of clinical oropharyngeal candidiasis during the previous 2 years constituted the test group (n = 52), while the comparison group (n = 39) had no oropharyngeal candidiasis during that period. Data collected from medical records, oral examination, and SLPI enzyme-linked immunosorbent assay quantitation of whole saliva were analyzed by t test, analysis of variance, linear regression, and unconditional logistic regression. The test group had a significantly higher mean salivary SLPI level than the comparison group (1.9 μg/ml versus 1.1 μg/ml, P < 0.05). Linear regression modeling identified CD4 cell count and history of oropharyngeal candidiasis as key predictors of salivary SLPI and revealed a significant interaction (P < 0.05) between immunosuppression (CD4 cell count below 200 cells/μl) and positive history of oropharyngeal candidiasis in predicting salivary SLPI level. By logistic regression modeling, a salivary SLPI level exceeding 2.1 μg/ml, low CD4 count, antiretroviral monotherapy, and smoking were key predictors of oropharyngeal candidiasis. These data support a key role for SLPI in the oral mucosal defense against C. albicans. The antimicrobial mucosal protein may serve as an indicator of previous oropharyngeal candidiasis infection among immunosuppressed persons

    FTY720 Promotes Local Microvascular Network Formation and Regeneration of Cranial Bone Defects

    No full text
    The calvarial bone microenvironment contains a unique progenitor niche that should be considered for therapeutic manipulation when designing regeneration strategies. Recently, our group demonstrated that cells isolated from the dura are multipotent and exhibit expansion potential and robust mineralization on biodegradable constructs in vitro. In this study, we evaluate the effectiveness of healing critical-sized cranial bone defects by enhancing microvascular network growth and host dura progenitor trafficking to the defect space pharmacologically by delivering drugs targeted to sphingosine 1-phosphate (S1P) receptors. We demonstrate that delivery of pharmacological agonists to (S1P) receptors S1P1 and S1P3 significantly increase bone ingrowth, total microvessel density, and smooth muscle cell investment on nascent microvessels within the defect space. Further, in vitro proliferation and migration studies suggest that selective activation of S1P3 promotes recruitment and growth of osteoblastic progenitors from the meningeal dura mater
    corecore