15 research outputs found
Ceftazidime-avibactam resistance in Klebsiella pneumoniae sequence type 37: a decade of persistence and concealed evolution
The first reports of carbapenem-resistant Enterobacterales in our hospital date back to 2006. In that period, few ertapenem-resistant but meropenem-susceptible Klebsiella pneumoniae isolates belonging to sequence type (ST) 37 were retrieved from clinical samples. These strains produced the CTX-M-15 extended spectrum ÎČ-lactamase, OmpK35 was depleted due to a nonsense mutation, and a novel OmpK36 variant was identified. Yet, starting from 2010, Klebsiella pneumoniae carbapenemase (KPC)-producing ST512 isolates started prevailing and ST37 vanished from sight. Since 2018 the clinical use of the combination of ceftazidime-avibactam (CZA) has been introduced in clinical practice for the treatment of bacteria producing serine-ÎČ-lactamases, but KPC-producing, CZA-resistant K. pneumoniae are emerging. In 2021, four CZA-resistant ST37 isolates producing KPC variants were isolated from the same number of patients. blaKPC gene cloning in Escherichia coli was used to define the role of those KPC variants on CZA resistance, and whole genome sequencing was performed on these isolates and on three ST37 historical isolates from 2011. CZA resistance was due to mutations in the blaKPC genes carried on related pKpQIL-type plasmids, and three variants of the KPC enzyme have been identified in the four ST37 strains. The four ST37 isolates were closely related to each other and to the historical isolates, suggesting that ST37 survived without notice in our hospital for 10âyears, waiting to re-emerge as a CZA-resistant K. pneumoniae clone. The ancestor of these contemporary isolates derives from ST37 wild-type porin strains, with no other mutations in chromosomal genes involved in conferring antibiotic resistance (parC, gyrA, ramR, mgrB, pmrB)
Genome-based retrospective analysis of a Providencia stuartii outbreak in Rome, Italy. Broad spectrum IncC plasmids spread the NDM carbapenemase within the hospital
Providencia stuartii is a member of the Morganellaceae family, notorious for its intrinsic resistance to several antibiotics, including last-resort drugs such as colistin and tigecycline. Between February and March 2022, a four-patient outbreak sustained by P. stuartii occurred in a hospital in Rome. Phenotypic analyses defined these strains as eXtensively Drug-Resistant (XDR). Wholegenome sequencing was performed on the representative P. stuartii strains and resulted in fully closed genomes and plasmids. The genomes were highly related phylogenetically and encoded various virulence factors, including fimbrial clusters. The XDR phenotype was primarily driven by the presence of the (NDM)-N-bla- 1 metallo- beta-lactamase alongside the rmtC 16S rRNA methyltransferase, conferring resistance to most beta-lactams and every aminoglycoside, respectively. These genes were found on an IncC plasmid that was highly related to an NDM-IncC plasmid retrieved from a ST15 Klebsiella pneumoniae strain circulating in the same hospital two years earlier. Given its ability to acquire resistance plasmids and its intrinsic resistance mechanisms, P. stuartii is a formidable pathogen. The emergence of XDR P. stuartii strains poses a significant public health threat. It is essential to monitor the spread of these strains and develop new strategies for their control and treatment
The functional VNTR MNS16A of the TERT gene is associated with human longevity in a population of Central Italy.
Telomerase, encoded by TERT, is the ribonucleoprotein polymerase that maintains telomere ends and it plays a crucial role in cellular senescence. TERT single nucleotide polymorphisms (SNPs) have been associated both with various malignancies and telomere length (TL). The association of TERT SNPs with longevity remains uncertain and varies with ethnicity. The aim of this study was to investigate whether the functional variable number of tandem repeat (VNTR) MNS16A of TERT is associated with longevity.
METHODS:
MNS16A genotypes have been determined for 1072 unrelated healthy individuals from Central Italy (18-106 years old) divided into three gender-specific age classes defined according to demographic information and accounting for the different survivals between sexes: for men (women), the first class consists of individuals 88 years old (>91 years old). TL was assessed using genomic DNA from whole blood of 72 selected individuals by a multiplex real-time PCR assay.
RESULTS:
MNS16A appears associated to longevity, showing significant associations in Comparison 2 (Age Class 3 vs. Age Class 2) under both additive (odds ratio [O.R.] 0.749; p=0.019) and dominant (O.R. 0.579; p=0.011) models. The MNS16A*L allele is significantly underrepresented in Age Class 3 (O.R. 0.759; p=0.020) compared to Age Class 2. A significant telomere attrition is reported along the three age classes (p=0.0001), that remains significant only in L*/L* genotype carriers (p=0.002) when the analysis was conducted according to MNS16A genotype.
CONCLUSIONS:
The TERT MNS16A*L allele appears negatively associated with longevity. The concomitant significant telomere cross sectional attrition rate observed for L*/L* genotype suggests that this polymorphism could influence human longevity by affecting TL
Multiplicity of blaKPC genes and pKpQIL plasmid plasticity in the development of ceftazidime-avibactam and Meropenem coresistance in Klebsiella pneumoniae sequence type 307
In 2021, Klebsiella pneumoniae sequence type 307 (ST307) strains causing pulmonary and bloodstream infections identified in a hospital in Rome, Italy, reached high levels of resistance to ceftazidime-avibactam (CZA). One of these strains reached high levels of resistance to both CZA and carbapenems and carried two copies of bla(KPC-3) and one copy of bla(KPC-31) located on plasmid pKpQIL. The genomes and plasmids of CZA-resistant ST307 strains were analyzed to identify the molecular mechanisms leading to the evolution of resistance and compared with ST307 genomes at local and global levels. A complex pattern of multiple plasmids in rearranged configurations, coresident within the CZA-carbapenem-resistant K. pneumoniae strain, was observed. Characterization of these plasmids revealed recombination and segregation events explaining why K. pneumoniae isolates from the same patient had different antibiotic resistance profiles. This study illustrates the intense genetic plasticity occurring in ST307, one of the most worldwide-diffused K. pneumoniae high-risk clones.In 2021, Klebsiella pneumoniae sequence type 307 (ST307) strains causing pulmonary and bloodstream infections identified in a hospital in Rome, Italy, reached high levels of resistance to ceftazidime-avibactam (CZA). One of these strains reached high levels of resistance to both CZA and carbapenems and carried two copies of bla(KPC-3) and one copy of bla(KPC-31) located on plasmid pKpQIL
In vivo evolution to hypermucoviscosity and ceftazidime/avibactam resistance in a liver abscess caused by Klebsiella pneumoniae sequence type 512
Carbapenemase-producing Klebsiella pneumoniae represents a major public health issue globally. Isolates with resistance to the newest drugs, like ceftazidime/avibactam (CZA), are increasingly reported. In this study, we analyzed the evolution of KPC-3-producing sequence type (ST) 512 K. pneumoniae strains isolated at three different times (hospitalization days 45, 56, and 78) from the same patient, two of which were observed in a pericholecystic liver abscess. The three K. pneumoniae isolates (295Kp, 304Kp, and hmv-318Kp) from the same patient were subjected to antimicrobial susceptibility testing, whole-genome sequencing, sedimentation assay, biofilm measurement, serum resistance assay, macrophage phagocytosis, and adhesion assays. KPC-producing isolate hmv-318Kp exhibited carbapenem susceptibility, hypermucoviscous (hmv) colony phenotype and CZA resistance. Virulence markers of hypervirulent Klebsiella were absent. Two non-synonymous mutations were identified in the hmv-318Kp genome comparing with isogenic strains: a single-nucleotide polymorphism (SNP) occurred in the pKpQIL plasmid, changing blaKPC-3 in the blaKPC-31 gene variant, conferring CZA resistance; and a second SNP occurred in the wzc gene of the capsular biosynthesis cluster, encoding a tyrosine kinase, resulting in the F557S Wzc protein mutation. The Klebsiella pneumoniae strain exhibiting an hmv phenotype (hmv-Kp) phenotype has been previously associated with amino acid substitutions occurring in the Wzc tyrosin kinase protein. We observed in vivo evolution of the ST512 strain to CZA resistance and acquisition of hypermucoviscosity. The pathogenetic role of the detected Wzc substitution is not fully elucidated, but other Wzc mutations were previously reported in hmv K. pneumoniae. Wzc mutants may be more frequent than expected and an underreported cause of hypermucoviscosity in K. pneumoniae clinical isolates
Evidence for the Band-Edge Exciton of CuInS2 Nanocrystals Enables Record Efficient Large-Area Luminescent Solar Concentrators
AbstractTernary IâIIIâVI2 nanocrystals (NCs), such as CuInS2, are receiving attention as heavyâmetalsâfree materials for solar cells, luminescent solar concentrators (LSCs), LEDs, and bioâimaging. The origin of the optical properties of CuInS2 NCs are however not fully understood. A recent theoretical model suggests that their characteristic Stokesâshifted and longâlived luminescence arises from the structure of the valence band (VB) and predicts distinctive optical behaviours in defectâfree NCs: the quadratic dependence of the radiative decay rate and the Stokes shift on the NC radius. If confirmed, this would have crucial implications for LSCs as the solar spectral coverage ensured by lowâbandgap NCs would be accompanied by increased reâabsorption losses. Here, by studying stoichiometric CuInS2 NCs, it is revealed for the first time the spectroscopic signatures predicted for the free bandâedge exciton, thus supporting the VBâstructure model. At very low temperatures, the NCs also show darkâstate emission likely originating from enhanced electronâhole spin interaction. The impact of the observed optical behaviours on LSCs is evaluated by Monte Carlo rayâtracing simulations. Based on the emerging device design guidelines, opticalâgrade largeâarea (30Ă30 cm2) LSCs with optical power efficiency (OPE) as high as 6.8% are fabricated, corresponding to the highest value reported to date for largeâarea devices
Unravelling the Scientific Debate on How to Address Wolf-Dog Hybridization in Europe
Anthropogenic hybridization is widely perceived as a threat to the conservation of biodiversity. Nevertheless, to date, relevant policy and management interventions are unresolved and highly convoluted. While this is due to the inherent complexity of the issue, we hereby hypothesize that a lack of agreement concerning management goals and approaches, within the scientific community, may explain the lack of social awareness on this phenomenon, and the absence of effective pressure on decision-makers. By focusing on wolf x dog hybridization in Europe, we hereby (a) assess the state of the art of issues on wolf x dog hybridization within the scientific community, (b) assess the conceptual bases for different viewpoints, and (c) provide a conceptual framework aiming at reducing the disagreements. We adopted the Delphi technique, involving a three-round iterative survey addressed to a selected sample of experts who published at Web of Science listed journals, in the last 10 years on wolf x dog hybridization and related topics. Consensus was reached that admixed individuals should always be defined according to their genetic profile, and that a reference threshold for admixture (i.e., q-value in assignment tests) should be formally adopted for their identification. To mitigate hybridization, experts agreed on adopting preventive, proactive and, when concerning small and recovering wolf populations, reactive interventions. Overall, experts' consensus waned as the issues addressed became increasingly practical, including the adoption of lethal removal. We suggest three non-mutually exclusive explanations for this trend: (i) value-laden viewpoints increasingly emerge when addressing practical issues, and are particularly diverging between experts with different disciplinary backgrounds (e.g., ecologists, geneticists); (ii) some experts prefer avoiding the risk of potentially giving carte blanche to wolf opponents to (illegally) remove wolves, based on the wolf x dog hybridization issue; (iii) room for subjective interpretation and opinions result from the paucity of data on the effectiveness of different management interventions. These results have management implications and reveal gaps in the knowledge on a wide spectrum of issues related not only to the management of anthropogenic hybridization, but also to the role of ethical values and real-world management concerns in the scientific debate
Palaeoenvironments and palaeotopography of a multilayered city during the Etruscan and Roman periods: Early interaction of fluvial processes and urban growth at Pisa (Tuscany, Italy)
A critical geoarchaeological approach, based on fully integrated archaeological, geomorphological and stratigraphic data, allowed for the identification of the palaeoenvironments, palaeotopography and urban growth patterns of Pisa (NW Italy) during the Etruscan (first half of the 5th century BC-first half of the 1st century BC) and Roman (second half of the 1st century BC-2nd century AD) periods. This powerful methodology, based on aerial and satellite images, electrical resistivity tomography, LiDAR, and core analysis, led to the reconstruction of landscape evolution, highlighting human-environment interactions. During the Etruscan and Roman periods, Pisa saw a fast urban expansion in a dense and unstable fluvial network. Wide portions of the city were characterised by poorly drained conditions until the 1st century AD, when the alluvial plain became well drained under increasing anthropogenic pressure (Roman Centuriatio). Poorly drained floodplains and channel-related backswamps represent the topographically lowest zones of the ancient Pisa. This city developed within an intricate pattern of palaeochannels, related to two main rivers: the palaeoArno, which flowed in proximity of its present position, and the former palaeoSerchio river, known as Auser flowing in the northern part of the city. Since Etruscan times, a mounded relief was formed in the historical city centre of Pisa, becoming wider and more prominent (up to ca. 2ma.s.l.) during the Roman period, concomitant with a southward rapid expansion of the urban tissue. Nevertheless, the urban growth patterns substantially followed the Etruscan city's fabric, with marked concentration of the urban structures (public and private buildings) and manufacturing sites on the northern relief, close to the Auser. The Auser River thus played a crucial role in the environmental and topographic evolution of the city area
Intrinsic and Extrinsic Exciton Recombination Pathways in AgInS2 Colloidal Nanocrystals
Ternary I-III-VI2 nanocrystals (NCs), such as AgInS2 and CuInS2, are garnering interest as heavy-metal-free materials for photovoltaics, luminescent solar concentrators, LEDs, and bioimaging. The origin of the emission and absorption properties in this class of NCs is still a subject of debate. Recent theoretical and experimental studies revealed that the characteristic Stokes-shifted and long-lived luminescence of stoichiometric CuInS2 NCs arises from the detailed structure of the valence band featuring two sublevels with different parity. The same valence band substructure is predicted to occur in AgInS2 NCs, yet no experimental confirmation is available to date. Here, we use complementary spectroscopic, spectro-electrochemical, and magneto-optical investigations as a function of temperature to investigate the band structure and the excitonic recombination mechanisms in stoichiometric AgInS2 NCs. Transient transmission measurements reveal the signatures of two subbands with opposite parity, and photoluminescence studies at cryogenic temperatures evidence a dark state emission due to enhanced exchange interaction, consistent with the behavior of stoichiometric CuInS2 NCs. Lowering the temperature as well as applying reducing electrochemical potentials further suppress electron trapping, which represents the main nonradiative channel for exciton decay, leading to nearly 100% emission efficiency