35 research outputs found

    Fast beam stacking using RF barriers

    Get PDF
    Two barrier RF systems were fabricated, tested and installed in the Fermilab Main Injector. Each can provide 8 kV rectangular pulses (the RF barriers) at 90 kHz. When a stationary barrier is combined with a moving barrier, injected beams from the Booster can be continuously deflected, folded and stacked in the Main Injector, which leads to doubling of the beam intensity. This paper gives a report on the beam experiment using this novel technology.Comment: 2007 Particle Accelerator Conference (PAC07

    Single/Few Bunch Space Charge Effects at 8-GeV in the Fermilab Main Injector

    Get PDF
    For Project X, it is planned to inject a beam of 3x10**11 particles per bunch into the Main Injector. Therefore, at 8-GeV, there will be increased space charge tune shifts and an increased incoherent tune spread. In preparation for these higher intensity bunches exploratory studies have commenced looking at the transmission of different intensity bunches at different tunes. An experiment is described with results for bunch intensities between 20 and 300 10**9 particles. To achieve the highest intensity bunches coalescing at 8-GeV is required, resulting in a longer bunch length. Comparisons show that similar transmission curves are obtained when the intensity and bunch length have increased by factors of 3.2 and 3.4 respectively, indicating the incoherent tune shifts are similar, as expected from theory. The results of these experiments will be used in conjugation with simulations to further study high intensity bunches in the Main Injector.Comment: 3 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisian

    6 Batch Injection and Slipped Beam Tune Measurements in Fermilab's Main Injector

    Full text link
    During Nova operations it is planned to run the Fermilab Recycler in a 12 batch slip stacking mode. In preparation for this, measurements of the tune during a six batch injection and then as the beam is slipped by changing the RF frequency, but without a 7th injection, have been carried out in the Main Injector. The coherent tune shifts due to the changing beam intensity were measured and compared well with the theoretically expected tune shift. The tune shifts due to changing RF frequency, required for slip stacking, also compare well with the linear theory, although some nonlinear affects are apparent at large frequency changes. These results give us confidence that the expected tunes shifts during 12 batch slip stacking Recycler operations can be accommodated.Comment: 3 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisian

    Coalescing at 8 GeV in the Fermilab Main Injector

    Full text link
    For Project X, it is planned to inject a beam of 3 10**11 particles per bunch into the Main Injector. To prepare for this by studying the effects of higher intensity bunches in the Main Injector it is necessary to perform coalescing at 8 GeV. The results of a series of experiments and simulations of 8 GeV coalescing are presented. To increase the coalescing efficiency adiabatic reduction of the 53 MHz RF is required, resulting in ~70% coalescing efficiency of 5 initial bunches. Data using wall current monitors has been taken to compare previous work and new simulations for 53 MHz RF reduction, bunch rotations and coalescing, good agreement between experiment and simulation was found. Possible schemes to increase the coalescing efficiency and generate even higher intensity bunches are discussed. These require improving the timing resolution of the low level RF and/or tuning the adiabatic voltage reduction of the 53 MHz.Comment: 3 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisian

    Field emission from two-dimensional GeAs

    Get PDF
    GeAs is a layered material of the IV–V groups that is attracting growing attention for possible applications in electronic and optoelectronic devices. In this study, exfoliated multilayer GeAs nanoflakes are structurally characterized and used as the channel of back-gate field-effect transistors. It is shown that their gate-modulated p-type conduction is decreased by exposure to light or electron beam. Moreover, the observation of a field emission (FE) current demonstrates the suitability of GeAs nanoflakes as cold cathodes for electron emission and opens up new perspective applications of two-dimensional GeAs in vacuum electronics. FE occurs with a turn-on field of ~80 Vum-1 and attains a current density higher than 10 Acm-2, following the general Fowler–Nordheim model with high reproducibility

    Secondary Electron Yield Measurements of Fermilab's Main Injector Vacuum Vessel

    Full text link
    We discuss the progress made on a new installation in Fermilab's Main Injector that will help investigate the electron cloud phenomenon by making direct measurements of the secondary electron yield (SEY) of samples irradiated in the accelerator. In the Project X upgrade the Main Injector will have its beam intensity increased by a factor of three compared to current operations. This may result in the beam being subject to instabilities from the electron cloud. Measured SEY values can be used to further constrain simulations and aid our extrapolation to Project X intensities. The SEY test-stand, developed in conjunction with Cornell and SLAC, is capable of measuring the SEY from samples using an incident electron beam when the samples are biased at different voltages. We present the design and manufacture of the test-stand and the results of initial laboratory tests on samples prior to installation.Comment: 3 pp. 3rd International Particle Accelerator Conference (IPAC 2012) 20-25 May 2012, New Orleans, Louisian

    Formation of a two-dimensional oxide via oxidation of a layered material

    Get PDF
    We investigate the oxidation mechanism of the layered model system GeAs. In situ X-ray photoelectron spectroscopy experiments performed by irradiating an individual flake with synchrotron radiation in the presence of oxygen show that while As leaves the GeAs surface upon oxidation, a Ge-rich ultrathin oxide film is being formed in the topmost layer of the flake. We develop a theoretical model that supports the layer-by-layer oxidation of GeAs, with a logarithmic kinetics. Finally, assuming that the activation energy for the oxidation process changes linearly with coverage, we estimate that the activation energy for As oxidation is almost twice that for Ge at room temperature
    corecore