5 research outputs found
Down-regulation of PLCγ2-β-catenin pathway promotes activation and expansion of myeloid-derived suppressor cells in cancer
Myeloid-derived suppressor cells (MDSCs) favor tumor promotion, mainly by suppressing antitumor T cell responses in many cancers. Although the mechanism of T cell inhibition is established, the pathways leading to MDSC accumulation in bone marrow and secondary lymphoid organs of tumor-bearing hosts remain unclear. We demonstrate that down-regulation of PLCγ2 signaling in MDSCs is responsible for their aberrant expansion during tumor progression. PLCγ2(−/−) MDSCs show stronger immune-suppressive activity against CD8(+) T cells than WT MDSCs and potently promote tumor growth when adoptively transferred into WT mice. Mechanistically, PLCγ2(−/−) MDSCs display reduced β-catenin levels, and restoration of β-catenin expression decreases their expansion and tumor growth. Consistent with a negative role for β-catenin in MDSCs, its deletion in the myeloid population leads to MDSC accumulation and supports tumor progression, whereas expression of β-catenin constitutively active reduces MDSC numbers and protects from tumor growth. Further emphasizing the clinical relevance of these findings, MDSCs isolated from pancreatic cancer patients show reduced p-PLCγ2 and β-catenin levels compared with healthy controls, similar to tumor-bearing mice. Thus, for the first time, we demonstrate that down-regulation of PLCγ2–β-catenin pathway occurs in mice and humans and leads to MDSC-mediated tumor expansion, raising concerns about the efficacy of systemic β-catenin blockade as anti-cancer therapy
Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis
Age is a significant risk factor for the development of cancer. However, the mechanisms that drive age-related increases in cancer remain poorly understood. To determine if senescent stromal cells influence tumorigenesis, we develop a mouse model that mimics the aged skin microenvironment. Using this model, here we find that senescent stromal cells are sufficient to drive localized increases in suppressive myeloid cells that contributed to tumour promotion. Further, we find that the stromal-derived senescence-associated secretory phenotype factor interleukin-6 orchestrates both increases in suppressive myeloid cells and their ability to inhibit anti-tumour T-cell responses. Significantly, in aged, cancer-free individuals, we find similar increases in immune cells that also localize near senescent stromal cells. This work provides evidence that the accumulation of senescent stromal cells is sufficient to establish a tumour-permissive, chronic inflammatory microenvironment that can shelter incipient tumour cells, thus allowing them to proliferate and progress unabated by the immune system
Bromohydrin pyrophosphate enhances antibody-dependent cell-mediated cytotoxicity induced by therapeutic antibodies
International audienc