17 research outputs found
Directed percolation identified as equilibrium pre-transition towards non-equilibrium arrested gel states
The macroscopic properties of gels arise from their slow dynamics and load-bearing network structure, which are exploited by nature and in numerous industrial products. However, a link between these structural and dynamical properties has remained elusive. Here we present confocal microscopy experiments and simulations of gel-forming colloid–polymer mixtures. They reveal that gel formation is preceded by continuous and directed percolation. Both transitions lead to system-spanning networks, but only directed percolation results in extremely slow dynamics, ageing and a shrinking of the gel that resembles synaeresis. Therefore, dynamical arrest in gels is found to be linked to a structural transition, namely directed percolation, which is quantitatively associated with the mean number of bonded neighbours. Directed percolation denotes a universality class of transitions. Our study hence connects gel formation to a well-developed theoretical framework, which now can be exploited to achieve a detailed understanding of arrested gels
Colloids in light fields: particle dynamics in random and periodic energy landscapes
The dynamics of colloidal particles in potential energy landscapes have
mainly been investigated theoretically. In contrast, here we discuss the
experimental realization of potential energy landscapes with the help of light
fields and the observation of the particle dynamics by video microscopy. The
experimentally observed dynamics in periodic and random potentials are compared
to simulation and theoretical results in terms of, e.g. the mean-squared
displacement, the time-dependent diffusion coefficient or the non-Gaussian
parameter. The dynamics are initially diffusive followed by intermediate
subdiffusive behaviour which again becomes diffusive at long times. How
pronounced and extended the different regimes are, depends on the specific
conditions, in particular the shape of the potential as well as its roughness
or amplitude but also the particle concentration. Here we focus on dilute
systems, but the dynamics of interacting systems in external potentials, and
thus the interplay between particle-particle and particle-potential
interactions, is also mentioned briefly. Furthermore, the observed dynamics of
dilute systems resemble the dynamics of concentrated systems close to their
glass transition, with which it is compared. The effect of certain potential
energy landscapes on the dynamics of individual particles appears similar to
the effect of interparticle interactions in the absence of an external
potential
Random phase approximation for multi-band Hubbard models
We derive the random-phase approximation for spin excitations in general
multi-band Hubbard models, starting from a collinear ferromagnetic Hartree-Fock
ground state. The results are compared with those of a recently introduced
variational many-body approach to spin-waves in itinerant ferromagnets. As we
exemplify for Hubbard models with one and two bands, the two approaches lead to
qualitatively different results. The discrepancies can be traced back to the
fact that the Hartree-Fock theory fails to describe properly the local moments
which naturally arise in a correlated-electron theory.Comment: 25 pages, 2 figure