1,508 research outputs found

    Asymptotic normalization of mirror states and the effect of couplings

    Full text link
    Assuming that the ratio between asymptotic normalization coefficients of mirror states is model independent, charge symmetry can be used to indirectly extract astrophysically relevant proton capture reactions on proton-rich nuclei based on information on stable isotopes. The assumption has been tested for light nuclei within the microscopic cluster model. In this work we explore the Hamiltonian independence of the ratio between asymptotic normalization coefficients of mirror states when deformation and core excitation is introduced in the system. For this purpose we consider a phenomenological rotor + N model where the valence nucleon is subject to a deformed mean field and the core is allowed to excite. We apply the model to 8Li/8B, 13C/13N, 17O/17F, 23Ne/23Al, and 27Mg/27P. Our results show that for most studied cases, the ratio between asymptotic normalization coefficients of mirror states is independent of the strength and multipolarity of the couplings induced. The exception is for cases in which there is an s-wave coupled to the ground state of the core, the proton system is loosely bound, and the states have large admixture with other configurations. We discuss the implications of our results for novae.Comment: 8 pages, 2 figures, submitted to PR

    Energy dependence of non-local potentials

    Full text link
    Recently a variety of studies have shown the importance of including non-locality in the description of reactions. The goal of this work is to revisit the phenomenological approach to determining non-local optical potentials from elastic scattering. We perform a χ2\chi^2 analysis of neutron elastic scattering data off 40^{40}Ca, 90^{90}Zr and 208^{208}Pb at energies E≈5−40E \approx 5-40 MeV, assuming a Perey and Buck or Tian, Pang, and Ma non-local form for the optical potential. We introduce energy and asymmetry dependencies in the imaginary part of the potential and refit the data to obtain a global parameterization. Independently of the starting point in the minimization procedure, an energy dependence in the imaginary depth is required for a good description of the data across the included energy range. We present two parameterizations, both of which represent an improvement over the original potentials for the fitted nuclei as well as for other nuclei not included in our fit. Our results show that, even when including the standard Gaussian non-locality in optical potentials, a significant energy dependence is required to describe elastic-scattering data.Comment: 6 pages, 3 figures, accepted by Phys. Rev. C Rapid Communicatio

    Influence of low energy scattering on loosely bound states

    Full text link
    Compact algebraic equations are derived, which connect the binding energy and the asymptotic normalization constant (ANC) of a subthreshold bound state with the effective-range expansion of the corresponding partial wave. These relations are established for positively-charged and neutral particles, using the analytic continuation of the scattering (S) matrix in the complex wave-number plane. Their accuracy is checked on simple local potential models for the 16O+n, 16O+p and 12C+alpha nuclear systems, with exotic nuclei and nuclear astrophysics applications in mind

    Extended gaussian ensemble solution and tricritical points of a system with long-range interactions

    Full text link
    The gaussian ensemble and its extended version theoretically play the important role of interpolating ensembles between the microcanonical and the canonical ensembles. Here, the thermodynamic properties yielded by the extended gaussian ensemble (EGE) for the Blume-Capel (BC) model with infinite-range interactions are analyzed. This model presents different predictions for the first-order phase transition line according to the microcanonical and canonical ensembles. From the EGE approach, we explicitly work out the analytical microcanonical solution. Moreover, the general EGE solution allows one to illustrate in details how the stable microcanonical states are continuously recovered as the gaussian parameter γ\gamma is increased. We found out that it is not necessary to take the theoretically expected limit γ→∞\gamma \to \infty to recover the microcanonical states in the region between the canonical and microcanonical tricritical points of the phase diagram. By analyzing the entropy as a function of the magnetization we realize the existence of unaccessible magnetic states as the energy is lowered, leading to a treaking of ergodicity.Comment: 8 pages, 5 eps figures. Title modified, sections rewritten, tricritical point calculations added. To appear in EPJ

    Global persistence exponent of the two-dimensional Blume-Capel model

    Full text link
    The global persistence exponent θg\theta_g is calculated for the two-dimensional Blume-Capel model following a quench to the critical point from both disordered states and such with small initial magnetizations. Estimates are obtained for the nonequilibrium critical dynamics on the critical line and at the tricritical point. Ising-like universality is observed along the critical line and a different value θg=1.080(4)\theta_g =1.080(4) is found at the tricritical point.Comment: 7 pages with 3 figure

    Random-cluster representation of the Blume-Capel model

    Full text link
    The so-called diluted-random-cluster model may be viewed as a random-cluster representation of the Blume--Capel model. It has three parameters, a vertex parameter aa, an edge parameter pp, and a cluster weighting factor qq. Stochastic comparisons of measures are developed for the `vertex marginal' when q∈[1,2]q\in[1,2], and the `edge marginal' when q\in[1,\oo). Taken in conjunction with arguments used earlier for the random-cluster model, these permit a rigorous study of part of the phase diagram of the Blume--Capel model

    A comparison of the binding sites of antibodies and single-domain antibodies

    Get PDF
    Antibodies are the largest class of biotherapeutics. However, in recent years, single-domain antibodies have gained traction due to their smaller size and comparable binding affinity. Antibodies (Abs) and single-domain antibodies (sdAbs) differ in the structures of their binding sites: most significantly, single-domain antibodies lack a light chain and so have just three CDR loops. Given this inherent structural difference, it is important to understand whether Abs and sdAbs are distinguishable in how they engage a binding partner and thus, whether they are suited to different types of epitopes. In this study, we use non-redundant sequence and structural datasets to compare the paratopes, epitopes and antigen interactions of Abs and sdAbs. We demonstrate that even though sdAbs have smaller paratopes, they target epitopes of equal size to those targeted by Abs. To achieve this, the paratopes of sdAbs contribute more interactions per residue than the paratopes of Abs. Additionally, we find that conserved framework residues are of increased importance in the paratopes of sdAbs, suggesting that they include non-specific interactions to achieve comparable affinity. Furthermore, the epitopes of sdAbs are only marginally less accessible than those of Abs: we posit that this may be explained by differences in the orientation and compaction of sdAb and Ab CDR-H3 loops. Overall, our results have important implications for the engineering and humanization of sdAbs, as well as the selection of the best modality for targeting a particular epitope

    Moving beyond physical education subject knowledge to develop knowledgeable teachers of the subject

    Get PDF
    All knowledge is socially constructed, including physical education teachers’ knowledge of their subject. It is acquired from other people either formally and deliberately (e.g. by being taught) or informally and casually (e.g. by interacting with physical education teachers or playing in a sports team). The social aspects of learning appear to be particularly strong in physical education. This has implications for the development of knowledge for teaching, with trainee teachers focusing on the development of subject, and particularly content, knowledge. Focusing on subject knowledge reinforces a traditional view of physical education as it is, not as it might be to meet the needs of young people today. It is argued that attention needs to be given not only to the knowledge, skills and competencies that trainee teachers ought to develop but also to the social aspects of their learning and development and the context in which they learn. Attention also needs to be given to how the ability to think critically can be developed so that trainee teachers can become reflective practitioners able to challenge and, where appropriate, change the teaching of the subject. Only by doing this can the particularly strong socialisation which shapes the values and beliefs of physical education teachers begin to be challenged. However, as the process of developing knowledgeable teachers is ongoing it is also necessary to look beyond teacher training to continuing professional development

    Universality and scaling study of the critical behavior of the two-dimensional Blume-Capel model in short-time dynamics

    Full text link
    In this paper we study the short-time behavior of the Blume-Capel model at the tricritical point as well as along the second order critical line. Dynamic and static exponents are estimated by exploring scaling relations for the magnetization and its moments at early stage of the dynamic evolution. Our estimates for the dynamic exponents, at the tricritical point, are z=2.215(2)z= 2.215(2) and θ=−0.53(2)\theta= -0.53(2).Comment: 12 pages, 9 figure

    Moving beyond physical education subject knowledge to develop knowledgeable teachers of the subject

    Get PDF
    All knowledge is socially constructed, including physical education teachers’ knowledge of their subject. It is acquired from other people either formally and deliberately (e.g. by being taught) or informally and casually (e.g. by interacting with physical education teachers or playing in a sports team). The social aspects of learning appear to be particularly strong in physical education. This has implications for the development of knowledge for teaching, with trainee teachers focusing on the development of subject, and particularly content, knowledge. Focusing on subject knowledge reinforces a traditional view of physical education as it is, not as it might be to meet the needs of young people today. It is argued that attention needs to be given not only to the knowledge, skills and competencies that trainee teachers ought to develop but also to the social aspects of their learning and development and the context in which they learn. Attention also needs to be given to how the ability to think critically can be developed so that trainee teachers can become reflective practitioners able to challenge and, where appropriate, change the teaching of the subject. Only by doing this can the particularly strong socialisation which shapes the values and beliefs of physical education teachers begin to be challenged. However, as the process of developing knowledgeable teachers is ongoing it is also necessary to look beyond teacher training to continuing professional development
    • …
    corecore