1,508 research outputs found
Asymptotic normalization of mirror states and the effect of couplings
Assuming that the ratio between asymptotic normalization coefficients of
mirror states is model independent, charge symmetry can be used to indirectly
extract astrophysically relevant proton capture reactions on proton-rich nuclei
based on information on stable isotopes. The assumption has been tested for
light nuclei within the microscopic cluster model. In this work we explore the
Hamiltonian independence of the ratio between asymptotic normalization
coefficients of mirror states when deformation and core excitation is
introduced in the system. For this purpose we consider a phenomenological rotor
+ N model where the valence nucleon is subject to a deformed mean field and the
core is allowed to excite. We apply the model to 8Li/8B, 13C/13N, 17O/17F,
23Ne/23Al, and 27Mg/27P. Our results show that for most studied cases, the
ratio between asymptotic normalization coefficients of mirror states is
independent of the strength and multipolarity of the couplings induced. The
exception is for cases in which there is an s-wave coupled to the ground state
of the core, the proton system is loosely bound, and the states have large
admixture with other configurations. We discuss the implications of our results
for novae.Comment: 8 pages, 2 figures, submitted to PR
Energy dependence of non-local potentials
Recently a variety of studies have shown the importance of including
non-locality in the description of reactions. The goal of this work is to
revisit the phenomenological approach to determining non-local optical
potentials from elastic scattering. We perform a analysis of neutron
elastic scattering data off Ca, Zr and Pb at energies MeV, assuming a Perey and Buck or Tian, Pang, and Ma non-local
form for the optical potential. We introduce energy and asymmetry dependencies
in the imaginary part of the potential and refit the data to obtain a global
parameterization. Independently of the starting point in the minimization
procedure, an energy dependence in the imaginary depth is required for a good
description of the data across the included energy range. We present two
parameterizations, both of which represent an improvement over the original
potentials for the fitted nuclei as well as for other nuclei not included in
our fit. Our results show that, even when including the standard Gaussian
non-locality in optical potentials, a significant energy dependence is required
to describe elastic-scattering data.Comment: 6 pages, 3 figures, accepted by Phys. Rev. C Rapid Communicatio
Influence of low energy scattering on loosely bound states
Compact algebraic equations are derived, which connect the binding energy and
the asymptotic normalization constant (ANC) of a subthreshold bound state with
the effective-range expansion of the corresponding partial wave. These
relations are established for positively-charged and neutral particles, using
the analytic continuation of the scattering (S) matrix in the complex
wave-number plane. Their accuracy is checked on simple local potential models
for the 16O+n, 16O+p and 12C+alpha nuclear systems, with exotic nuclei and
nuclear astrophysics applications in mind
Extended gaussian ensemble solution and tricritical points of a system with long-range interactions
The gaussian ensemble and its extended version theoretically play the
important role of interpolating ensembles between the microcanonical and the
canonical ensembles. Here, the thermodynamic properties yielded by the extended
gaussian ensemble (EGE) for the Blume-Capel (BC) model with infinite-range
interactions are analyzed. This model presents different predictions for the
first-order phase transition line according to the microcanonical and canonical
ensembles. From the EGE approach, we explicitly work out the analytical
microcanonical solution. Moreover, the general EGE solution allows one to
illustrate in details how the stable microcanonical states are continuously
recovered as the gaussian parameter is increased. We found out that it
is not necessary to take the theoretically expected limit
to recover the microcanonical states in the region between the canonical and
microcanonical tricritical points of the phase diagram. By analyzing the
entropy as a function of the magnetization we realize the existence of
unaccessible magnetic states as the energy is lowered, leading to a treaking of
ergodicity.Comment: 8 pages, 5 eps figures. Title modified, sections rewritten,
tricritical point calculations added. To appear in EPJ
Global persistence exponent of the two-dimensional Blume-Capel model
The global persistence exponent is calculated for the
two-dimensional Blume-Capel model following a quench to the critical point from
both disordered states and such with small initial magnetizations.
Estimates are obtained for the nonequilibrium critical dynamics on the
critical line and at the tricritical point.
Ising-like universality is observed along the critical line and a different
value is found at the tricritical point.Comment: 7 pages with 3 figure
Random-cluster representation of the Blume-Capel model
The so-called diluted-random-cluster model may be viewed as a random-cluster
representation of the Blume--Capel model. It has three parameters, a vertex
parameter , an edge parameter , and a cluster weighting factor .
Stochastic comparisons of measures are developed for the `vertex marginal' when
, and the `edge marginal' when q\in[1,\oo). Taken in conjunction
with arguments used earlier for the random-cluster model, these permit a
rigorous study of part of the phase diagram of the Blume--Capel model
A comparison of the binding sites of antibodies and single-domain antibodies
Antibodies are the largest class of biotherapeutics. However, in recent years, single-domain antibodies have gained traction due to their smaller size and comparable binding affinity. Antibodies (Abs) and single-domain antibodies (sdAbs) differ in the structures of their binding sites: most significantly, single-domain antibodies lack a light chain and so have just three CDR loops. Given this inherent structural difference, it is important to understand whether Abs and sdAbs are distinguishable in how they engage a binding partner and thus, whether they are suited to different types of epitopes. In this study, we use non-redundant sequence and structural datasets to compare the paratopes, epitopes and antigen interactions of Abs and sdAbs. We demonstrate that even though sdAbs have smaller paratopes, they target epitopes of equal size to those targeted by Abs. To achieve this, the paratopes of sdAbs contribute more interactions per residue than the paratopes of Abs. Additionally, we find that conserved framework residues are of increased importance in the paratopes of sdAbs, suggesting that they include non-specific interactions to achieve comparable affinity. Furthermore, the epitopes of sdAbs are only marginally less accessible than those of Abs: we posit that this may be explained by differences in the orientation and compaction of sdAb and Ab CDR-H3 loops. Overall, our results have important implications for the engineering and humanization of sdAbs, as well as the selection of the best modality for targeting a particular epitope
Moving beyond physical education subject knowledge to develop knowledgeable teachers of the subject
All knowledge is socially constructed, including physical education teachers’ knowledge of their subject. It is acquired from other people either formally and deliberately (e.g. by being taught) or informally and casually (e.g. by interacting with physical education teachers or playing in a sports team). The social aspects of learning appear to be particularly strong in physical education. This has implications for the development of knowledge for teaching, with trainee teachers focusing on the development of subject, and particularly content, knowledge. Focusing on subject knowledge reinforces a traditional view of physical education as it is, not as it might be to meet the needs of young people today. It is argued that attention needs to be given not only to the knowledge, skills and competencies that trainee teachers ought to develop but also to the social aspects of their learning and development and the context in which they learn. Attention also needs to be given to how the ability to think critically can be developed so that trainee teachers can become reflective practitioners able to challenge and, where appropriate, change the teaching of the subject. Only by doing this can the particularly strong socialisation which shapes the values and beliefs of physical education teachers begin to be challenged. However, as the process of developing knowledgeable teachers is ongoing it is also necessary to look beyond teacher training to continuing professional development
Universality and scaling study of the critical behavior of the two-dimensional Blume-Capel model in short-time dynamics
In this paper we study the short-time behavior of the Blume-Capel model at
the tricritical point as well as along the second order critical line. Dynamic
and static exponents are estimated by exploring scaling relations for the
magnetization and its moments at early stage of the dynamic evolution. Our
estimates for the dynamic exponents, at the tricritical point, are and .Comment: 12 pages, 9 figure
Moving beyond physical education subject knowledge to develop knowledgeable teachers of the subject
All knowledge is socially constructed, including physical education teachers’ knowledge of their subject. It is acquired from other people either formally and deliberately (e.g. by being taught) or informally and casually (e.g. by interacting with physical education teachers or playing in a sports team). The social aspects of learning appear to be particularly strong in physical education. This has implications for the development of knowledge for teaching, with trainee teachers focusing on the development of subject, and particularly content, knowledge. Focusing on subject knowledge reinforces a traditional view of physical education as it is, not as it might be to meet the needs of young people today. It is argued that attention needs to be given not only to the knowledge, skills and competencies that trainee teachers ought to develop but also to the social aspects of their learning and development and the context in which they learn. Attention also needs to be given to how the ability to think critically can be developed so that trainee teachers can become reflective practitioners able to challenge and, where appropriate, change the teaching of the subject. Only by doing this can the particularly strong socialisation which shapes the values and beliefs of physical education teachers begin to be challenged. However, as the process of developing knowledgeable teachers is ongoing it is also necessary to look beyond teacher training to continuing professional development
- …