401 research outputs found

    Generation of pure, ionic entangled states via linear optics

    Full text link
    In this paper, we propose a novel scheme to generate two-ion maximally entangled states from either pure product states or mixed states using linear optics. Our new scheme is mainly based on the ionic interference. Because the proposed scheme can generate pure maximally entangled states from mixed states, we denote it as purification-like generation scheme. The scheme does not need a Bell state analyzer as the existing entanglement generation schemes do, it also avoids the difficulty of synchronizing the arrival time of the two scattered photons faced by the existing schemes, thus the proposed new entanglement generation scheme can be implemented more easily in practice.Comment: 6 pages, 4 figure

    Entanglement in the anisotropic Heisenberg XYZ model with different Dzyaloshinskii-Moriya interaction and inhomogeneous magnetic field

    Full text link
    We investigate the entanglement in a two-qubit Heisenberg XYZ system with different Dzyaloshinskii-Moriya(DM) interaction and inhomogeneous magnetic field. It is found that the control parameters (DxD_{x}, BxB_{x} and bxb_{x}) are remarkably different with the common control parameters (DzD_{z},BzB_{z} and bzb_{z}) in the entanglement and the critical temperature, and these x-component parameters can increase the entanglement and the critical temperature more efficiently. Furthermore, we show the properties of these x-component parameters for the control of entanglement. In the ground state, increasing DxD_{x} (spin-orbit coupling parameter) can decrease the critical value bxcb_{xc} and increase the entanglement in the revival region, and adjusting some parameters (increasing bxb_{x} and JJ, decreasing BxB_{x} and Δ\Delta) can decrease the critical value DxcD_{xc} to enlarge the revival region. In the thermal state, increasing DxD_{x} can increase the revival region and the entanglement in the revival region (for TT or bxb_{x}), and enhance the critical value BxcB_{xc} to make the region of high entanglement larger. Also, the entanglement and the revival region will increase with the decrease of BxB_{x} (uniform magnetic field). In addition, small bxb_{x} (nonuniform magnetic field) has some similar properties to DxD_{x}, and with the increase of bxb_{x} the entanglement also has a revival phenomenon, so that the entanglement can exist at higher temperature for larger bxb_{x}.Comment: 8 pages, 8 figure

    Implementation of quantum algorithms with resonant interactions

    Full text link
    We propose a scheme for implementing quantum algorithms with resonant interactions. Our scheme only requires resonant interactions between two atoms and a cavity mode, which is simple and feasible. Moreover, the implementation would be an important step towards the fabrication of quantum computers in cavity QED system.Comment: 4 pages, 3 figure

    Scheme for deterministic Bell-state-measurement-free quantum teleportation

    Full text link
    A deterministic teleportation scheme for unknown atomic states is proposed in cavity QED. The Bell state measurement is not needed in the teleportation process, and the success probability can reach 1.0. In addition, the current scheme is insensitive to the cavity decay and thermal field.Comment: 3 pages, no figur
    • …
    corecore