26,122 research outputs found

    Defending against Sybil Devices in Crowdsourced Mapping Services

    Full text link
    Real-time crowdsourced maps such as Waze provide timely updates on traffic, congestion, accidents and points of interest. In this paper, we demonstrate how lack of strong location authentication allows creation of software-based {\em Sybil devices} that expose crowdsourced map systems to a variety of security and privacy attacks. Our experiments show that a single Sybil device with limited resources can cause havoc on Waze, reporting false congestion and accidents and automatically rerouting user traffic. More importantly, we describe techniques to generate Sybil devices at scale, creating armies of virtual vehicles capable of remotely tracking precise movements for large user populations while avoiding detection. We propose a new approach to defend against Sybil devices based on {\em co-location edges}, authenticated records that attest to the one-time physical co-location of a pair of devices. Over time, co-location edges combine to form large {\em proximity graphs} that attest to physical interactions between devices, allowing scalable detection of virtual vehicles. We demonstrate the efficacy of this approach using large-scale simulations, and discuss how they can be used to dramatically reduce the impact of attacks against crowdsourced mapping services.Comment: Measure and integratio

    Identifying Urban Functional Areas and Their Dynamic Changes in Beijing: Using Multiyear Transit Smart Card Data

    Get PDF
    A growing number of megacities have been experiencing changes to their landscape due to rapid urbanisation trajectories and travel behaviour dynamics. Therefore, it is of great significance to investigate the distribution and evolution of a city’s urban functional areas over different periods of time. Although the smart card automated fare collection system (SCAFC) is already widely used, few studies have used smart card data to infer information about changes in urban functional areas, particularly in developing countries. Thus, this research aims to delineate the dynamic changes that have occurred in urban functional areas based on passengers’ travel patterns, using Beijing as a case study. We established a Bayesian framework and applied a Gaussian mixture model (GMM) derived from transit smart card data in order to gain insight into passengers’ travel patterns at station level and then identify the dynamic changes in their corresponding urban functional areas. Our results show that Beijing can be clustered into five different functional areas based on the analysis of corresponding transit station functions, namely: multimodal interchange hub and leisure area; residential area; employment area; mixed but mainly residential area; and a mixed residential and employment area. In addition, we found that urban functional areas have experienced slight changes between 2014 and 2017. The findings can be used to inform urban planning strategies designed to tackle urban spatial structure issues, as well as guiding future policy evaluation of urban landscape pattern use

    Superconductivity induced by Ni doping in BaFe2_2As2_2

    Full text link
    A series of 122 phase BaFe2−x_{2-x}Nix_xAs2_2 (xx = 0, 0.055, 0.096, 0.18, 0.23) single crystals were grown by self flux method and a dome-like Ni doping dependence of superconducting transition temperature is discovered. The transition temperature TconT_c^{on} reaches a maximum of 20.5 K at xx = 0.096, and it drops to below 4 K as xx ≥\geq 0.23. The negative thermopower in the normal state indicates that electron-like charge carrier indeed dominates in this system. This Ni-doped system provides another example of superconductivity induced by electron doping in the 122 phase.Comment: 7 pages, 5 figures, revised version, added EDX result, accepted for special issue of NJ

    Quasiparticle Scattering Interference in (K,Tl)FexSe2 Superconductors

    Full text link
    We model the quasiparticle interference (QPI) pattern in the recently discovered (K,Tl)Fe_xSe2 superconductors. We show in the superconducting state that, due to the absence of hole pockets at the Brillouin zone center, the quasiparticle scattering occurs around the momentum transfer q=(0,0) and (\pm \pi, \pm \pi) between electron pockets located at the zone boundary. More importantly, although both d_{x^2-y^2}-wave and s-wave pairing symmetry lead to nodeless quasiparticle excitations, distinct QPI features are predicted between both types of pairing symmetry. In the presence of a nonmagnetic impurity scattering, the QPI exhibits strongest scattering with q=(\pm \pi, \pm \pi) for the d_{x^2-y^2}-wave pairing symmetry; while the strongest scattering exhibits a ring-like structure centered around both q=(0,0) and (\pm \pi, \pm \pi) for the isotropic s-wave pairing symmetry. A unique QPI pattern has also been predicted due to a local pair-potential-type impurity scattering. The significant contrast in the QPI pattern between the d_{x^2-y^2}-wave and the isotropic s-wave pairing symmetry can be used to probe the pairing symmetry within the Fourier-transform STM technique.Comment: 4+ pages, 3 embedded eps figure

    Multi-wavelength emissions from the millisecond pulsar binary PSR J1023+0038 during an accretion active state

    Get PDF
    Recent observations strongly suggest that the millisecond pulsar binary PSR J1023+0038 has developed an accretion disk since 2013 June. We present a multi-wavelength analysis of PSR J1023+0038, which reveals that 1) its gamma-rays suddenly brightened within a few days in June/July 2013 and has remained at a high gamma-ray state for several months; 2) both UV and X-ray fluxes have increased by roughly an order of magnitude, and 3) the spectral energy distribution has changed significantly after the gamma-ray sudden flux change. Time variabilities associated with UV and X-rays are on the order of 100-500 seconds and 50-100 seconds, respectively. Our model suggests that a newly formed accretion disk due to the sudden increase of the stellar wind could explain the changes of all these observed features. The increase of UV is emitted from the disk, and a new component in gamma-rays is produced by inverse Compton scattering between the new UV component and pulsar wind. The increase of X-rays results from the enhancement of injection pulsar wind energy into the intra-binary shock due to the increase of the stellar wind. We also predict that the radio pulses may be blocked by the evaporated winds from the disk and the pulsar is still powered by rotation.Comment: 8 pages, 3 figures; accepted for publication in Ap

    Superconductivity at the Border of Electron Localization and Itinerancy

    Full text link
    The superconducting state of iron pnictides and chalcogenides exists at the border of antiferromagnetic order. Consequently, these materials could provide clues about the relationship between magnetism and unconventional superconductivity. One explanation, motivated by the so-called bad-metal behaviour of these materials, proposes that magnetism and superconductivity develop out of quasi-localized magnetic moments which are generated by strong electron-electron correlations. Another suggests that these phenomena are the result of weakly interacting electron states that lie on nested Fermi surfaces. Here we address the issue by comparing the newly discovered alkaline iron selenide superconductors, which exhibit no Fermi-surface nesting, to their iron pnictide counterparts. We show that the strong-coupling approach leads to similar pairing amplitudes in these materials, despite their different Fermi surfaces. We also find that the pairing amplitudes are largest at the boundary between electronic localization and itinerancy, suggesting that new superconductors might be found in materials with similar characteristics.Comment: Version of the published manuscript prior to final journal-editting. Main text (23 pages, 4 figures) + Supplementary Information (14 pages, 7 figures, 3 tables). Calculation on the single-layer FeSe is added. Enhancement of the pairing amplitude in the vicinity of the Mott transition is highlighted. Published version is at http://www.nature.com/ncomms/2013/131115/ncomms3783/full/ncomms3783.htm

    LHC diphoton Higgs signal and top quark forward-backward asymmetry in quasi-inert Higgs doublet model

    Full text link
    In the quasi-inert Higgs doublet model, we study the LHC diphoton rate for a standard model-like Higgs boson and the top quark forward-backward asymmetry at Tevatron. Taking into account the constraints from the vacuum stability, unitarity, electroweak precision tests, flavor physics and the related experimental data of top quark, we find that compared with the standard model prediction, the diphoton rate of Higgs boson at LHC can be enhanced due to the light charged Higgs contributions, while the measurement of the top quark forward-backward asymmetry at Tevatron can be explained to within 1σ1\sigma due to the non-standard model neutral Higgs bosons contributions. Finally, the correlations between the two observables are discussed.Comment: 14 pages, 5 figues. Version to appear in JHEP, some references adde
    • …
    corecore