49,154 research outputs found
Destruction of the Mott Insulating Ground State of Ca_2RuO_4 by a Structural Transition
We report a first-order phase transition at T_M=357 K in single crystal
Ca_2RuO_4, an isomorph to the superconductor Sr_2RuO_4. The discontinuous
decrease in electrical resistivity signals the near destruction of the Mott
insulating phase and is triggered by a structural transition from the low
temperature orthorhombic to a high temperature tetragonal phase. The magnetic
susceptibility, which is temperature dependent but not Curie-like decreases
abruptly at TM and becomes less temperature dependent. Unlike most insulator to
metal transitions, the system is not magnetically ordered in either phase,
though the Mott insulator phase is antiferromagnetic below T_N=110 K.Comment: Accepted for publication in Phys. Rev. B (Rapid Communications
Anisotropic softening of magnetic excitations in lightly electron doped SrIrO
The magnetic excitations in electron doped (SrLa)IrO with
were measured using resonant inelastic X-ray scattering at the Ir
-edge. Although much broadened, well defined dispersive magnetic
excitations were observed. Comparing with the magnetic dispersion from the
parent compound, the evolution of the magnetic excitations upon doping is
highly anisotropic. Along the anti-nodal direction, the dispersion is almost
intact. On the other hand, the magnetic excitations along the nodal direction
show significant softening. These results establish the presence of strong
magnetic correlations in electron doped SrLa)IrO with close
analogies to the hole doped cuprates, further motivating the search for high
temperature superconductivity in this system
Critical States Embedded in the Continuum
We introduce a class of critical states which are embedded in the continuum
(CSC) of one-dimensional optical waveguide array with one non-Hermitian defect.
These states are at the verge of being fractal and have real propagation
constant. They emerge at a phase transition which is driven by the imaginary
refractive index of the defect waveguide and it is accompanied by a mode
segregation which reveals analogies with the Dicke super -radiance. Below this
point the states are extended while above they evolve to exponentially
localized modes. An addition of a background gain or loss can turn these
localized states to bound states in the continuum.Comment: 4.5 pages, 3 figures, 1 page of supplementary material including one
figur
Impacts of reduced inequalities on quality education: Examining the relationship between regional sustainability and higher education
Although the United Nations’ Sustainable Development Goals (SDGs) advocate, through SDG 4 and SDG 10, equitable quality education and the reduction of inequalities within and between countries, respectively, few studies have examined how inequalities in regional sustainability influence higher education. Therefore, this study aims to examine the relationship between regional sustainability and higher education in China using fixed-effects panel modelling. A systematic force framework showing how regional sustainability drives higher education was constructed from economic, social, and environmental perspectives, and the endogeneity in the process of how regional sustainability affects higher education was explored by introducing one-year lagged values as instrumental variables. Our results show that regional sustainability has a significant impact on higher educational attainment in China, with differing effects in the eastern, central, and western regions, respectively. In central China, economic sustainability plays a significant positive role in higher educational attainment; in the western region, economic and social sustainability have stronger positive effects, while environmental sustainability has significantly negative effects. In terms of policy implications, our findings can be used to support regional development policies to promote regional higher education
The relation between star formation rate and accretion rate in LINERs
It is argued that there is a linear correlation between star formation rate
(SFR) and accretion rate for normal bright active galactic nuclei (AGNs).
However, it is still unclear whether this correlation holds for LINERs, of
which the accretion rates are relatively lower than those of normal bright
AGNs. The radiatively inefficient accretion flows (RIAFs) are believed to be
present in these LINERs. In this work, we derive accretion rates for a sample
of LINERs from their hard X-ray luminosities based on spectral calculations for
RIAFs. We find that LINERs follow the same correlation between star formation
rate and accretion rate defined by normal bright AGNs, when reasonable
parameters are adopted for RIAFs. It means that the gases feed the black hole
and star formation in these low-luminosity LINERs may follow the same way as
that in normal bright AGNs, which is roughly consistent with recent numerical
simulations on quasar evolution.Comment: 15 pages, 3 figures, accepted for publication in PASP, in pres
Evolution of Magnetism in Single-Crystal Honeycomb Iridates
We report the successful synthesis of single-crystals of the layered iridate,
(NaLi)IrO, , and a thorough study of
its structural, magnetic, thermal and transport properties. The new compound
allows a controlled interpolation between NaIrO and LiIrO,
while maintaing the novel quantum magnetism of the honeycomb Ir planes.
The measured phase diagram demonstrates a dramatic suppression of the N\'eel
temperature, , at intermediate suggesting that the magnetic order in
NaIrO and LiIrO are distinct, and that at , the
compound is close to a magnetically disordered phase that has been sought after
in NaIrO and LiIrO. By analyzing our magnetic data with a
simple theoretical model we also show that the trigonal splitting, on the
Ir ions changes sign from NaIrO and LiIrO, and the
honeycomb iridates are in the strong spin-orbit coupling regime, controlled by
\jeff=1/2 moments.Comment: updated version with more dat
High-temperature weak ferromagnetism on the verge of a metallic state: Impact of dilute Sr-doping on BaIrO3
The 5d-electron based BaIrO3 is a nonmetallic weak ferromagnet with a Curie
temperature at Tc=175 K. Its largely extended orbitals generate strong
electron-lattice coupling, and magnetism and electronic structure are thus
critically linked to the lattice degree of freedom. Here we report results of
our transport and magnetic study on slightly Sr doped BaIrO3. It is found that
dilute Sr-doping drastically suppresses Tc, and instantaneously leads to a
nonmetal-metal transition at high temperatures. All results highlight the
instability of the ground state and the subtle relation between magnetic
ordering and electron mobility. It is clear that BaIrO3 along with very few
other systems represents a class of materials where the magnetic and transport
properties can effectively be tuned by slight alterations in lattice
parameters
Competing Ground States in Triple-layered Sr4Ru3O10: Verging on Itinerant Ferromagnetism with Critical Fluctuations
Sr4Ru3O10 is characterized by a sharp metamagnetic transition and
ferromagnetic behavior occurring within the basal plane and along the c-axis,
respectively. Resistivity at magnetic field, B, exhibits low-frequency quantum
oscillations when B||c-axis and large magnetoresistivity accompanied by
critical fluctuations driven by the metamagnetism when B^c-axis. The complex
behavior evidenced in resistivity, magnetization and specific heat presented is
not characteristic of any obvious ground states, and points to an exotic state
that shows a delicate balance between fluctuations and order.Comment: 18 pages, 4 figure
Transport development, intellectual property rights protection and innovation: The case of the Yangtze River Delta Region, China
The links between transport development and economic growth have been widely discussed in the field of transport governance and economics. However, the existing studies have not included an institutional variable when exploring the role of transport development in innovation disparities within a region. In order to fill the research gap, this paper examines whether transport development and the institution of intellectual property rights (IPRs) can assist in understanding disparities between cities in terms of innovation, using the Yangtze River Delta Region (YRDR) as a case study. The impact mechanism is twofold. Firstly, transport development can affect institutions, including IPRs protection, which in turn has an influence on innovation. Secondly, evidence from existing economic literature suggests a link between transport development and innovation through economic agglomeration, production factors and industrial flows. We first employ ordinary least squares (OLS) regression to test the basic associations between transport development and innovation. We then apply two-stage least squares (2SLS) regression analysis to address endogeneity and add a spatial model to examine neighbour effects. The findings show that IPRs protection has a positive effect on patenting and research and development (R&D), while the roles played by transport development stock and density in patenting and R&D are more mixed. Moreover, our findings on neighbour effects show that agglomeration economies exist in the YRDR. These findings have important policy implications regarding urban agglomeration for both the YRDR specifically and China overall
- …