4 research outputs found

    Film dynamics and lubricant depletion by droplets moving on lubricated surfaces

    Full text link
    Lubricated surfaces have shown promise in numerous applications where impinging foreign droplets must be removed easily; however, before they can be widely adopted, the problem of lubricant depletion, which eventually leads to decreased performance, must be solved. Despite recent progress, a quantitative mechanistic explanation for lubricant depletion is still lacking. Here, we first explained the shape of a droplet on a lubricated surface by balancing the Laplace pressures across interfaces. We then showed that the lubricant film thicknesses beneath, behind, and wrapping around a moving droplet change dynamically with droplet's speed---analogous to the classical Landau-Levich-Derjaguin problem. The interconnected lubricant dynamics results in the growth of the wetting ridge around the droplet, which is the dominant source of lubricant depletion. We then developed an analytic expression for the maximum amount of lubricant that can be depleted by a single droplet. Counter-intuitively, faster moving droplets subjected to higher driving forces deplete less lubricant than their slower moving counterparts. The insights developed in this work will inform future work and the design of longer-lasting lubricated surfaces

    China’s 10-year progress in DC gas-insulated equipment: From basic research to industry perspective

    Get PDF
    The construction of the future energy structure of China under the 2050 carbon-neutral vision requires compact direct current (DC) gas-insulation equipment as important nodes and solutions to support electric power transmission and distribution of long-distance and large-capacity. This paper reviews China's 10-year progress in DC gas-insulated equipment. Important progresses in basic research and industry perspective are presented, with related scientific issues and technical bottlenecks being discussed. The progress in DC gas-insulated equipment worldwide (Europe, Japan, America) is also reported briefly

    Lipid turnover during senescence

    Get PDF
    Rapid turnover of stored triacylglycerol occurs after seed germination, releasing fatty acids that provide carbon and energy for seedling establishment. Glycerolipid and fatty acid turnover that occurs at other times in the plant life cycle, including senescence is less studied. Although the entire pathway of beta-oxidation is induced during senescence, Arabidopsis leaf fatty acids turnover at rates 50 fold lower than in seedlings. Major unknowns in lipid turnover include the identity of lipases responsible for degradation of the wide diversity of galactolipid, phospholipid, and other lipid class structures. Also unknown is the relative flux of the acetyl-CoA product of beta-oxidation into alternative metabolic pathways. We present an overview of senescence-related glycerolipid turnover and discuss its function(s) and speculate about how it might be controlled to increase the energy density and nutritional content of crops. To better understand regulation of lipid turnover, we developed a database that compiles and plots transcript expression of lipid-related genes during natural leaf senescence of Arabidopsis. The database allowed identification of coordinated patterns of down-regulation of lipid biosynthesis genes.and the contrasting groups of genes that increase, including 68 putative lipases. (C) 2013 Published by Elsevier Ireland Ltd
    corecore