469 research outputs found

    Peri-implant and systemic effects of high-/low-affinity bisphosphonate-hydroxyapatite composite coatings in a rabbit model with peri-implant high bone turnover

    Get PDF
    BACKGROUND: Hydroxyapatite (HA) coatings composed with bisphosphonates (BPs) which have high mineral-binding affinities have been confirmed to successfully enhance implant stability. However, few previous studies focused on HA coatings composed with low-affinity BPs or on systemic effects of locally released BPs. METHODS: In this long-term study, we developed two kinds of BP-HA composite coatings using either high-affinity BP (alendronate, ALN) or low-affinity BP (risedronate, RIS). Thirty-six rabbits were divided into three groups according to different coating applications (group I: HA, group II: ALN-HA, and group III: RIS-HA). Implants were inserted into the proximal region of the medullary cavity of the left tibiay. At insertion, 2 × 10(8) wear particles were injected around implants to induce a peri-implant high bone turnover environment. Both local (left tibias) and systemic (right tibias and lumbar vertebrae) inhibitory effect on bone resorption were compared, including bone-implant integration, bone architecture, bone mineral density (BMD), implant stability, and serum levels of bone turnover markers. RESULTS: The results indicated that ALN-HA composite coating, which could induce higher bone-implant contact (BIC) ratio, bone mass augmentation, BMD, and implant stability in the peri-implant region, was more potent on peri-implant bone, while RIS-HA composite coating, which had significant systemic effect, was more potent on non-peri-implant bone, especially lumbar vertebrae. CONCLUSIONS: It is instructive and meaningful to further clinical studies that we could choose different BP-HA composite coatings according to the patient’s condition

    THE STUDY AND MANUFACTURE OF 10 METERS LARGE-SCALE SIMULATED TRAINING TREADMILL

    Get PDF
    INTRODUCTION: In order to take a simulated training, make a scientific monitor and make technical diagnoses of biomechanics for the elite middle and long distance runners and walkers , we has developed a 10 meters large-scale treadmill all by itself. METHODS OF MANUFACTURE: 1. The mechanical component adopts frame structure, rolling rub, shaft drive and synthetic surface track. 2. The electrical component adopts speed controller of changing the frequency, computerized programming and manual two-way control. REQUIREMENT OF THE FUNCTION: 1. The track is 1m in width and 10m in length and can hold 4 sportsmen running on it simultaneously. 2. The track speed is controlled by computerized program. The max. speed is 12m/s.Scope of stable speed: 0.7-1.3/ms, infinitely variable speeds, a stable variation of the speed. Accelerated function: 1.2m/s2. 3. The noise i

    Bis{μ-1,3-bis­[(benzimidazol-1-yl)meth­yl]benzene-κ2 N 3:N 3′}bis­[dichloridozinc(II)] dimethyl­formamide disolvate

    Get PDF
    In the title compound, [Zn2Cl4(C22H18N4)2]·2C3H7NO, the 1,3-bis­[(benzimidazol-1-yl)meth­yl]benzene ligand bridges two ZnCl2 units, forming a centrosymmetric dinuclear mol­ecule. The ZnII atom shows a distorted tetra­hedral coordination within a Cl2N2 donor set

    Diethyl 2-tert-butyl-6,9-dibromo-4,11-dioxo-5,10-dihydro-cis-1H,3H,4H,11H-2-azo-3a,4a,10a,11a-tetra­aza­benz[f]indeno[2,1,7-ija]azulene-11b,11c-dicarboxyl­ate

    Get PDF
    In the title compound, C24H29Br2N5O6, a glycoluril derivative, the 1,4-dibromo­benzene ring is fused to the seven-membered ring of the glycoluril unit containing two N atoms. The two five-membered rings in the glycoluril unit are approximately planar and the dihedral angle between them is 69.8 (2)°. The six-membered ring containing three N atoms adopts a chair conformation. The crystal packing is stabilized by an inter­molecular non-classical C—H⋯O hydrogen bond and a weak C—H⋯π inter­action. Both of the ester groups are found to be disordered over two positions. The occupancies of the disordered positions were refined to 0.73(1):0.27(1) and 0.56(1):0.44(1)

    Poly[[μ4-tartrato-cadmium(II)] 0.167-hydrate]

    Get PDF
    The title compound, {[Cd(C4H4O6)]·0.167H2O}n, adopts a three-dimensional network structure in which each CdII ion is chelated by two pairs of carboxyl­ate and hydroxyl O atoms from two tartrate anions, and is additionally linked to two O atoms of two carboxyl­ate groups that are not involved in chelation. The asymmetric unit has four independent cadmium atoms, two of which lie on special positions of 2 site symmetry. The tartrate anions all lie on general positions. All hydroxyl groups are engaged in O—H⋯O hydrogen-bonds, one of which is also bifurcated. The non-coordinating water molecule is situated on a site with half-occupation

    Heterogeneity in ess transcriptional organization and variable contribution of the Ess/Type VII protein secretion system to virulence across closely related <em>Staphylocccus aureus </em>strains

    Get PDF
    The Type VII protein secretion system, found in Gram-positive bacteria, secretes small proteins, containing a conserved W-x-G amino acid sequence motif, to the growth medium. Staphylococcus aureus has a conserved Type VII secretion system, termed Ess, which is dispensable for laboratory growth but required for virulence. In this study we show that there are unexpected differences in the organization of the ess gene cluster between closely related strains of S. aureus. We further show that in laboratory growth medium different strains of S. aureus secrete the EsxA and EsxC substrate proteins at different growth points, and that the Ess system in strain Newman is inactive under these conditions. Systematic deletion analysis in S. aureus RN6390 is consistent with the EsaA, EsaB, EssA, EssB, EssC and EsxA proteins comprising core components of the secretion machinery in this strain. Finally we demonstrate that the Ess secretion machinery of two S. aureus strains, RN6390 and COL, is important for nasal colonization and virulence in the murine lung pneumonia model. Surprisingly, however, the secretion system plays no role in the virulence of strain SA113 under the same conditions

    Flopping-mode spin qubit in a Si-MOS quantum dot

    Full text link
    Spin qubits based on silicon metal-oxide semiconductor (Si-MOS) quantum dots (QDs) are promising platforms for large-scale quantum computers. To control spin qubits in QDs, electric dipole spin resonance (EDSR) has been most commonly used in recent years. By delocalizing an electron across a double quantum dots charge state, flopping-mode EDSR has been realized in Si/SiGe QDs. Here, we demonstrate a flopping-mode spin qubit in a Si-MOS QD via Elzerman single-shot readout. When changing the detuning with a fixed drive power, we achieve s-shape spin resonance frequencies, an order of magnitude improvement in the spin Rabi frequencies, and virtually constant spin dephasing times. Our results offer a route to large-scale spin qubit systems with higher control fidelity in Si-MOS QDs.Comment: 5 pages, 4 figure

    Threshold-independent method for single-shot readout of spin qubits in semiconductor quantum dots

    Full text link
    The single-shot readout data process is essential for the realization of high-fidelity qubits and fault-tolerant quantum algorithms in semiconductor quantum dots. However, the fidelity and visibility of the readout process is sensitive to the choice of the thresholds and limited by the experimental hardware. By demonstrating the linear dependence between the measured spin state probabilities and readout visibilities along with dark counts, we describe an alternative threshold-independent method for the single-shot readout of spin qubits in semiconductor quantum dots. We can obtain the extrapolated spin state probabilities of the prepared probabilities of the excited spin state through the threshold-independent method. Then, we analyze the corresponding errors of the method, finding that errors of the extrapolated probabilities cannot be neglected with no constraints on the readout time and threshold voltage. Therefore, by limiting the readout time and threshold voltage we ensure the accuracy of the extrapolated probability. Then, we prove that the efficiency and robustness of this method is 60 times larger than that of the most commonly used method. Moreover, we discuss the influence of the electron temperature on the effective area with a fixed external magnetic field and provide a preliminary demonstration for a single-shot readout up to 0.7 K/1.5T in the future.Comment: 18 pages, 6 figure
    corecore