32 research outputs found

    Tensorized multi-view subspace representation learning

    Get PDF
    Self-representation based subspace learning has shown its effectiveness in many applications. In this paper, we promote the traditional subspace representation learning by simultaneously taking advantages of multiple views and prior constraint. Accordingly, we establish a novel algorithm termed as Tensorized Multi-view Subspace Representation Learning. To exploit different views, the subspace representation matrices of different views are regarded as a low-rank tensor, which effectively models the high-order correlations of multi-view data. To incorporate prior information, a constraint matrix is devised to guide the subspace representation learning within a unified framework. The subspace representation tensor equipped with a low-rank constraint models elegantly the complementary information among different views, reduces redundancy of subspace representations, and then improves the accuracy of subsequent tasks. We formulate the model with a tensor nuclear norm minimization problem constrained with ℓ2,1-norm and linear equalities. The minimization problem is efficiently solved by using an Augmented Lagrangian Alternating Direction Minimization method. Extensive experimental results on diverse multi-view datasets demonstrate the effectiveness of our algorithm

    Nanocomposites: synthesis, structure, properties and new application opportunities

    Full text link

    N-intertwined SIS epidemic model with Markovian switching

    No full text

    © Springer-Verlag 2005

    No full text
    Matting and compositing are important operations in the production of special effects [7]. During matting, foreground objects are extracted from a single image or video sequence. During compositing, the extracted foregroun

    Facial kinship verification:a comprehensive review and outlook

    No full text
    Abstract The goal of Facial Kinship Verification (FKV) is to automatically determine whether two individuals have a kin relationship or not from their given facial images or videos. It is an emerging and challenging problem that has attracted increasing attention due to its practical applications. Over the past decade, significant progress has been achieved in this new field. Handcrafted features and deep learning techniques have been widely studied in FKV. The goal of this paper is to conduct a comprehensive review of the problem of FKV. We cover different aspects of the research, including problem definition, challenges, applications, benchmark datasets, a taxonomy of existing methods, and state-of-the-art performance. In retrospect of what has been achieved so far, we identify gaps in current research and discuss potential future research directions

    A review of uncertainty quantification in deep learning:techniques, applications and challenges

    No full text
    Abstract Uncertainty quantification (UQ) methods play a pivotal role in reducing the impact of uncertainties during both optimization and decision making processes. They have been applied to solve a variety of real-world problems in science and engineering. Bayesian approximation and ensemble learning techniques are two widely-used types of uncertainty quantification (UQ) methods. In this regard, researchers have proposed different UQ methods and examined their performance in a variety of applications such as computer vision (e.g., self-driving cars and object detection), image processing (e.g., image restoration), medical image analysis (e.g., medical image classification and segmentation), natural language processing (e.g., text classification, social media texts and recidivism risk-scoring), bioinformatics, etc. This study reviews recent advances in UQ methods used in deep learning, investigates the application of these methods in reinforcement learning, and highlights fundamental research challenges and directions associated with UQ
    corecore