42,364 research outputs found

    SUSY Dark Matter In Light Of CDMS/XENON Limits

    Full text link
    In this talk we briefly review the current CDMS/XENON constraints on the neutralino dark matter in three popular supersymmetric models: the minimal (MSSM), the next-to-minimal (NMSSM) and the nearly minimal (nMSSM). The constraints from the dark matter relic density and various collider experiments are also taken into account. The conclusion is that for each model the current CDMS/XENON limits can readily exclude a large part of the parameter space allowed by other constraints and the future SuperCDMS or XENON100 can cover most of the allowed parameter space. The implication for the Higgs search at the LHC is also discussed. It is found that in the currently allowed parameter space the MSSM charged Higgs boson is quite unlikely to be discovered at the LHC while the neutral Higgs bosons HH and AA may be accessible at the LHC in the parameter space with a large μ\mu parameter.Comment: talk given at 2nd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry, Nov 5-6, 2010, Hsinchu, Taiwan (to appear in Int. J. Mod. Phys. D

    Twin wall of cubic-tetragonal ferroelastics

    Full text link
    We derive solutions for the twin wall linking two tetragonal variants of the cubic-tetragonal ferroelastic transformation, including for the first time the dilatational and shear energies and strains. Our solutions satisfy the compatibility relations exactly and are obtained at all temperatures. They require four non-vanishing strains except at the Barsch-Krumhansl temperature TBK (where only the two deviatoric strains are needed). Between the critical temperature and TBK, material in the wall region is dilated, while below TBK it is compressed. In agreement with experiment and more general theory, the twin wall lies in a cubic 110-type plane. We obtain the wall energy numerically as a function of temperature and we derive a simple estimate which agrees well with these values.Comment: 4 pages (revtex), 3 figure

    Numerical simulation of solid tumor blood perfusion and drug delivery during the “vascular normalization window” with antiangiogenic therapy

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Hindawi PublishingTo investigate the influence of vascular normalization on solid tumor blood perfusion and drug delivery, we used the generated blood vessel network for simulations. Considering the hemodynamic parameters changing after antiangiogenic therapies, the results show that the interstitial fluid pressure (IFP) in tumor tissue domain decreases while the pressure gradient increases during the normalization window. The decreased IFP results in more efficient delivery of conventional drugs to the targeted cancer cells. The outcome of therapies will improve if the antiangiogenic therapies and conventional therapies are carefully scheduled

    Pore Narrowing and Formation of Ultrathin Yttria-Stabilized Zirconia Layers in Ceramic Membranes by Chemical Vapor Deposition/Electrochemical Vapor Deposition

    Get PDF
    Chemical vapor deposition (CVD) and electrochemical vapor deposition (EVD) have been applied to deposit yttria-stabilized-zirconia (YSZ) on porous ceramic media. The experimental results indicate that the location of YSZ deposition can be varied from the surface of the substrates to the inside of the substrates by changing the CVD/EVD experimental conditions, i.e., the concentration ratio of the reactant vapors. The deposition width is strongly dependent on the deposition temperature used. The deposition of YSZ inside the pores resulted in pore narrowing and eventually pore closure, which was measured by using permpor-ometry. However, deposition of YSZ on top of porous ceramic substrates (outside the pores) did not result in a reduction of the average pore size. Ultrathin, dense YSZ layers on porous ceramic substrates can be obtained by suppressing the EVD layer growth process after pore closure
    corecore