435 research outputs found

    LRF-Net: Learning Local Reference Frames for 3D Local Shape Description and Matching

    Full text link
    The local reference frame (LRF) acts as a critical role in 3D local shape description and matching. However, most of existing LRFs are hand-crafted and suffer from limited repeatability and robustness. This paper presents the first attempt to learn an LRF via a Siamese network that needs weak supervision only. In particular, we argue that each neighboring point in the local surface gives a unique contribution to LRF construction and measure such contributions via learned weights. Extensive analysis and comparative experiments on three public datasets addressing different application scenarios have demonstrated that LRF-Net is more repeatable and robust than several state-of-the-art LRF methods (LRF-Net is only trained on one dataset). In addition, LRF-Net can significantly boost the local shape description and 6-DoF pose estimation performance when matching 3D point clouds.Comment: 28 pages, 14 figure

    Learn from Incomplete Tactile Data: Tactile Representation Learning with Masked Autoencoders

    Full text link
    The missing signal caused by the objects being occluded or an unstable sensor is a common challenge during data collection. Such missing signals will adversely affect the results obtained from the data, and this issue is observed more frequently in robotic tactile perception. In tactile perception, due to the limited working space and the dynamic environment, the contact between the tactile sensor and the object is frequently insufficient and unstable, which causes the partial loss of signals, thus leading to incomplete tactile data. The tactile data will therefore contain fewer tactile cues with low information density. In this paper, we propose a tactile representation learning method, named TacMAE, based on Masked Autoencoder to address the problem of incomplete tactile data in tactile perception. In our framework, a portion of the tactile image is masked out to simulate the missing contact region. By reconstructing the missing signals in the tactile image, the trained model can achieve a high-level understanding of surface geometry and tactile properties from limited tactile cues. The experimental results of tactile texture recognition show that our proposed TacMAE can achieve a high recognition accuracy of 71.4% in the zero-shot transfer and 85.8% after fine-tuning, which are 15.2% and 8.2% higher than the results without using masked modeling. The extensive experiments on YCB objects demonstrate the knowledge transferability of our proposed method and the potential to improve efficiency in tactile exploration.Comment: This paper is accepted at IROS 202

    BitDistiller: Unleashing the Potential of Sub-4-Bit LLMs via Self-Distillation

    Full text link
    The upscaling of Large Language Models (LLMs) has yielded impressive advances in natural language processing, yet it also poses significant deployment challenges. Weight quantization has emerged as a widely embraced solution to reduce memory and computational demands. This paper introduces BitDistiller, a framework that synergizes Quantization-Aware Training (QAT) with Knowledge Distillation (KD) to boost the performance of LLMs at ultra-low precisions (sub-4-bit). Specifically, BitDistiller first incorporates a tailored asymmetric quantization and clipping technique to maximally preserve the fidelity of quantized weights, and then proposes a novel Confidence-Aware Kullback-Leibler Divergence (CAKLD) objective, which is employed in a self-distillation manner to enable faster convergence and superior model performance. Empirical evaluations demonstrate that BitDistiller significantly surpasses existing methods in both 3-bit and 2-bit configurations on general language understanding and complex reasoning benchmarks. Notably, BitDistiller is shown to be more cost-effective, demanding fewer data and training resources. The code is available at https://github.com/DD-DuDa/BitDistiller
    • …
    corecore