71 research outputs found

    Excess Deaths of Gastrointestinal, Liver, and Pancreatic Diseases During the COVID-19 Pandemic in the United States

    Get PDF
    Objectives: To evaluate excess deaths of gastrointestinal, liver, and pancreatic diseases in the United States during the COVID-19 pandemic.Methods: We retrieved weekly death counts from National Vital Statistics System and fitted them with a quasi-Poisson regression model. Cause-specific excess deaths were calculated by the difference between observed and expected deaths with adjustment for temporal trend and seasonality. Demographic disparities and temporal-spatial patterns were evaluated for different diseases.Results: From March 2020 to September 2022, the increased mortality (measured by excess risks) for Clostridium difficile colitis, gastrointestinal hemorrhage, and acute pancreatitis were 35.9%; 24.8%; and 20.6% higher than the expected. For alcoholic liver disease, fibrosis/cirrhosis, and hepatic failure, the excess risks were 1.4–2.8 times higher among younger inhabitants than older inhabitants. The excess deaths of selected diseases were persistently observed across multiple epidemic waves with fluctuating trends for gastrointestinal hemorrhage and fibrosis/cirrhosis and an increasing trend for C. difficile colitis.Conclusion: The persistently observed excess deaths of digestive diseases highlights the importance for healthcare authorities to develop sustainable strategies in response to the long-term circulating of SARS-CoV-2 in the community

    miR-182 Regulates Metabolic Homeostasis by Modulating Glucose Utilization in Muscle

    Get PDF
    SummaryUnderstanding the fiber-type specification and metabolic switch in skeletal muscle provides insights into energy metabolism in physiology and diseases. Here, we show that miR-182 is highly expressed in fast-twitch muscle and negatively correlates with blood glucose level. miR-182 knockout mice display muscle loss, fast-to-slow fiber-type switching, and impaired glucose metabolism. Mechanistic studies reveal that miR-182 modulates glucose utilization in muscle by targeting FoxO1 and PDK4, which control fuel selection via the pyruvate dehydrogenase complex (PDHC). Short-term high-fat diet (HFD) feeding reduces muscle miR-182 levels by tumor necrosis factor α (TNFα), which contributes to the upregulation of FoxO1/PDK4. Restoration of miR-182 expression in HFD-fed mice induces a faster muscle phenotype, decreases muscle FoxO1/PDK4 levels, and improves glucose metabolism. Together, our work establishes miR-182 as a critical regulator that confers robust and precise controls on fuel usage and glucose homeostasis. Our study suggests that a metabolic shift toward a faster and more glycolytic phenotype is beneficial for glucose control

    Application of Peptides in Construction of Nonviral Vectors for Gene Delivery

    No full text
    Gene therapy, which aims to cure diseases by knocking out, editing, correcting or compensating abnormal genes, provides new strategies for the treatment of tumors, genetic diseases and other diseases that are closely related to human gene abnormalities. In order to deliver genes efficiently to abnormal sites in vivo to achieve therapeutic effects, a variety of gene vectors have been designed. Among them, peptide-based vectors show superior advantages because of their ease of design, perfect biocompatibility and safety. Rationally designed peptides can carry nucleic acids into cells to perform therapeutic effects by overcoming a series of biological barriers including cellular uptake, endosomal escape, nuclear entrance and so on. Moreover, peptides can also be incorporated into other delivery systems as functional segments. In this review, we referred to the biological barriers for gene delivery in vivo and discussed several kinds of peptide-based nonviral gene vectors developed for overcoming these barriers. These vectors can deliver different types of genetic materials into targeted cells/tissues individually or in combination by having specific structure–function relationships. Based on the general review of peptide-based gene delivery systems, the current challenges and future perspectives in development of peptidic nonviral vectors for clinical applications were also put forward, with the aim of providing guidance towards the rational design and development of such systems

    Research on the Mechanism of Micro-Water Jet-Guided Laser Precision Drilling in Metal Sheet

    No full text
    As the microporous structure has been widely used in the field of precision machining, at the same time, the requirements for the quality of microporous machining are continuously increasing. Water jet-guide laser processing technology (WJGL) has been gradually applied for its high machining precision. However, there are a few researches on the heat conduction process of WJGL processing metal materials. Therefore, it is of great significance to study the transient thermal effect of metal materials and the mechanism of material removal to improve the processing quality. In order to explore the heat conduction model of WJGL processing metal materials, this paper is based on the “element birth and death” technique in the finite element method, and the three-dimensional transient temperature field of four typical metal materials (titanium alloy, stainless steel, aluminum alloy, copper) and material removal model are established. Under this model, the removal mechanism of different metal materials and the influence of different process parameters on the temperature field distribution of the material are studied, and the influence of fixed-position drilling and helix drilling on the microporous morphology is compared. The results show that copper and aluminum alloys can obtain a larger depth-to-diameter ratio and a smaller hole taper. Titanium alloy and stainless steel have better hole roundness, lower hole edge temperature, and smaller thermal deformation. Hole roundness error and hole taper decrease with the increase of laser power. The roundness error of each material is reduced to within 10 μm when the laser power is 10 W, and the average hole taper is 8.73°

    Research on water jet-guided laser micro-hole machining of 6061 aluminum alloy

    No full text
    With the rapid development of the information age, electronic components are developing toward miniaturization, which makes the manufacturing of chips more and more difficult. Water jet-guided laser processing technology (WJGL) is a composite processing technology that combines pulsed laser and water jet, which can ensure the accuracy and efficiency of processing while small size parts machining. This paper is based on the "element birth and death" technique in the finite element method and the three-dimensional transient temperature field and subsequent material removal model of 6061 aluminum alloy are established. The effects of laser average power, pulse repetition frequency, and pulse action time on the transient thermal distribution, aperture, taper, and other forming qualities with the two technologies of fixed-point drilling and spiral drilling, respectively, are studied. Combining the experimental process, the general rule of morphology change of the micro-hole is obtained. The results show that WJGL of micro-hole is based on the combined effect of thermal ablation and real-time cooling. Spiral drilling can maintain a better hole shape but fixed-point drilling can achieve a smaller hole taper. With the increase of laser power, the hole taper increases, reaching saturation at 8 W. The repetition frequency is between 50 and 70 kHz to obtain better hole morphology while maintaining better processing efficiency, and the minimum hole taper is 8.21 degrees

    Control technology for soft rock roadway in inclined coal seam: A case study in Nui Beo mine, Quang Ninh, Vietnam

    No full text
    The large deformation of soft rock roadway is still a main concern for a large number of coal mines, particularly in terms of these located at the inclined seam with the large section. This paper presented a successful case study conducted at Nui Beo coal mine in Vietnam. Borehole peep detector was first put into the application to investigate the distribution of fractures to clarify the influenced range of surrounding rock. Then, the finite element analysis software (i.e. RS2) program is adapted to establish the numerical model aiming at exploring critical parameters for bolt support. Finally, a combined support technology including primary support by using a high prestressed bolt and reinforced technology by cable have been proposed and put into application. The results revealed that 1) the rheological strain is closely related to time, it is about 105 days from the firstly caving to be stable, 2) the maximum displacement of the ribs and roof-to-floor are 28mm and 47mmrespectively. The deformation of surrounding rock obtained from case study was used to evaluate the effectiveness of proposed support technology. The use of high prestressed bolt can maintain the stability of surrounding rock incline coal seam. Moreover, the experience can be used as a reference for other mines in Vietnam

    Preparation and Characterization of a New Low Refractive Index Ferrofluid

    No full text
    In this research, a new low refractive index ferrofluid is proposed by coating magnetic nanoparticles with a layer of silver, applying the method of modified chemical co-precipitation. This preparation method is green and environmentally friendly without toxic gases being released. Coated nanoparticles are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), and vibration sample magnetometery (VSM). These characterizations show that the silver nanoparticles grow on the surface of magnetic nanoparticles in this new ferrofluid. The hysteresis loop of this new ferrofluid demonstrates that it maintains superparamagnetic properties. A new method of refractive index measurement is applied in this research by employing a long-period grating (LPG) optical fiber sensor. The change value in the refractive index per unit concentration reduces by 16.46% compared to the conventional ferrofluid

    Photoelectrocatalytic Hydrogen Generation Enabled by CdS Passivated ZnCuInSe Quantum Dot-Sensitized TiO2 Decorated with Ag Nanoparticles

    No full text
    Here we present the photoelectrocatalytic hydrogen generation properties of CdS passivated ZnCuInSe (ZCISe) quantum dots (QDs) supported by TiO2 nanowires decorated with Ag nanoparticles. In this configuration, Ag nanoparticles were sandwiched between the photo-electrons collector (TiO2) and photo-sensitizers (ZCISe), and acted as an electron relay speeding up the charge carrier transport. ZCISe and CdS enabled the optical absorption of the photoelectrode ranging from ultraviolet to near infrared region, which significantly enhanced the solar-to-chemical energy conversion efficiency. A photocurrent of 10.5 mA/cm2 and a hydrogen production rate of about 52.9 μmol/h were achieved under simulated sunlight (1.5 AG)

    A Generalized Circular Dammann Grating With Controllable Impulse Ring Profile

    No full text
    corecore