89 research outputs found

    Neuroendocrine markers insulinoma-associated protein 1, chromogranin, synaptophysin, and CD56 show rare positivity in adenocarcinoma ex-goblet cell carcinoids

    Get PDF
    Background: Adenocarcinoma ex-goblet cell carcinoid (AdexGCC) was considered a neuroendocrine adenocarcinoma, despite majority of tumor cells being negative for conventional neuroendocrine markers such as chromogranin and synaptophysin. Recently, insulinoma-associated protein 1 (INSM1) has been identified as a novel neuroendocrine marker that is more sensitive than chromogranin, synaptophysin, and CD56 in pulmonary neuroendocrine tumors. Methods: We studied this marker in conjunction with chromogranin, synaptophysin, and CD56 in 36 appendiceal AdexGCCs (21 primaries, 15 metastatic). Results: Primary AdexGCCs showed staining for INSM1, chromogranin, synaptophysin, and CD56 in 13/21 (62%), 18/21 (86%), 18/21 (86%), and 9/19 (47%) cases, respectively. However, the mean proportion of tumor cells stained for INSM1, chromogranin, synaptophysin, and CD56 was only 8.0% (median 1%, range 0-70%), 15.7% (median 2%, range 0-70%), 19.9% (median 5%, range 0-90%), and 5.6% (median 0%, range 0-50%), respectively. Metastatic AdexGCCs showed staining for INSM1, chromogranin, synaptophysin, and CD56 in 8/15 (53%), 11/15 (73%), 12/15 (80%), and 3/14 (21%) cases. The mean proportion of tumor cells stained for INSM1, chromogranin, synaptophysin, and CD56 in metastatic tumors was 1% (median 1%, range 0-3%), 12% (median 1%, range 0-85%), 17% (median 5%, range 0-85%), and 2% (median 0%, range 0-20%), respectively. Conclusions: Primary and metastatic AdexGCCs showed no difference in INSM1, chromogranin, synaptophysin, or CD56 staining. INSM1 exhibits low expression in AdexGCCs and is expressed by a lower proportion of tumor cells compared to chromogranin and synaptophysin

    Chromosome X-encoded Cancer/Testis antigens are less frequently expressed in non-seminomatous germ cell tumors than in seminomas

    Get PDF
    Cancer/Testis (CT) antigens are normally only expressed in germ cells and yet are aberrantly activated in a wide variety of human cancers. Most chromosome X-encoded CT antigens (CT-X) show restricted expression in pre-meiotic germ cells in adult testis, except for the expression of SPANX in post-meiotic germ cells. In the present study, the expression of eight CT-X antigens (MAGE-A, NY-ESO-1, GAGE, MAGE-C1/CT7, MAGE-C2/CT10, CT45, SAGE1, and SPANX) in non-seminomatous germ cell tumors was evaluated immunohistochemically, including 24 embryonal carcinomas, 20 yolk sac tumors, 9 teratomas, and 3 choriocarcinomas, and the results were compared to our previous study of 77 classic seminomas and 2 spermatocytic seminomas. SPANX was not detected in any germ cell tumors tested. Spermatocytic seminoma showed strong expression of all CT-X antigens tested (except SPANX), reflecting their origin from adult CT-Xpositive pre-meiotic germ cells. Classic seminomas, originating from prenatal gonocytes, showed widely variable frequency of CT-X antigen expression, ranging from > 80% (CT7, CT10, CT45, and GAGE), 63% (MAGE-A), 18% (NY-ESO-1) to only 4% (SAGE1). In comparison, non-seminomatous germ cell tumors expressed CT-X antigens much less frequently and usually only in small subsets of tumor cells. Intratubular germ cell neoplasia (ITGCN) were mostly CT-X-negative, even in CT-X positive classic seminomas. These findings indicate that CT-X antigens are not expressed in the fetal precursor cells for germ cell tumors, and their expression likely reflects germ cell differentiation of the neoplastic cells (in seminomas) or aberrant gene activation as cancer antigens (in non-seminomatous tumors)

    Radiation and checkpoint inhibitor immunotherapy lead to long term disease control in a metastatic RCC patient with brain metastases

    Get PDF
    Renal cell carcinoma (RCC) comprises 4.2% of all new cancer cases in the United States and 30% of cases are metastatic (mRCC) at diagnosis. Brain metastatic RCC historically has poor prognosis, but the development of immune checkpoint inhibitors has revolutionized their care and may be successfully combined with SBRT to improve prognosis. Here, we present a case of a patient with mRCC who had brain metastases treated with concurrent immune checkpoint inhibitors and SBRT. He continues to survive with good functional status years following his initial diagnosis. We discuss the relevant history regarding treatment approach in patients with brain metastatic RCC, ongoing trials focusing on the combination of immunotherapy and radiation, and the potential and promise of the abscopal effect

    Targeted next-generation sequencing of dedifferentiated chondrosarcoma in the skull base reveals combined TP53 and PTEN mutations with increased proliferation index, an implication for pathogenesis

    Get PDF
    Dedifferentiated chondrosarcoma (DDCS) is a rare disease with a dismal prognosis. DDCS consists of two morphologically distinct components: the cartilaginous and noncartilaginous components. Whether the two components originate from the same progenitor cells has been controversial. Recurrent DDCS commonly displays increased proliferation compared with the primary tumor. However, there is no conclusive explanation for this mechanism. In this paper, we present two DDCSs in the sellar region. Patient 1 exclusively exhibited a noncartilaginous component with a TP53 frameshift mutation in the pathological specimens from the first surgery. The tumor recurred after radiation therapy with an exceedingly increased proliferation index. Targeted next-generation sequencing (NGS) revealed the presence of both a TP53 mutation and a PTEN deletion in the cartilaginous and the noncartilaginous components of the recurrent tumor. Fluorescence in situ hybridization and immunostaining confirmed reduced DNA copy number and protein levels of the PTEN gene as a result of the PTEN deletion. Patient 2 exhibited both cartilaginous and noncartilaginous components in the surgical specimens. Targeted NGS of cells from both components showed neither TP53 nor PTEN mutations, making Patient 2 a naïve TP53 and PTEN control for comparison. In conclusion, additional PTEN loss in the background of the TP53 mutation could be the cause of increased proliferation capacity in the recurrent tumor

    Neoadjuvant Therapy of Pancreatic Cancer: The Emerging Paradigm?

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140013/1/onco0192-sup-0001.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/140013/2/onco0192.pd

    Heterosis-related genes under different planting densities in maize

    Get PDF
    Heterosis and increasing planting density have contributed to improving maize grain yield (GY) for several decades. As planting densities increase, the GY per plot also increases whereas the contribution of heterosis to GY decreases. There are trade-offs between heterosis and planting density, and the transcriptional characterization of heterosis may explain the mechanism involved. In this study, 48 transcriptome libraries were sequenced from four inbred Chinese maize lines and their F1 hybrids. They were planted at densities of 45,000 plants/ha and 67,500 plants/ha. Maternal-effect differentially expressed genes (DEGs) played important roles in processes related to photosynthesis and carbohydrate biosynthesis and metabolism. Paternal-effect DEGs participated in abiotic/biotic stress response and plant hormone production under high planting density. Weighted gene co-expression network analysis revealed that high planting-density induced heterosis-related genes regulating abiotic/biotic stress response, plant hormone biosynthesis, and ubiquitin-mediated proteolysis but repressed other genes regulating energy formation. Under high planting density, maternal genes were mainly enriched in the photosynthesis reaction center, while paternal genes were mostly concentrated in the peripheral antenna system. Four important genes were identified in maize heterosis and high planting density, all with functions in photosynthesis, starch biosynthesis, auxin metabolism, gene silencing, and RNA interference

    SATB2 shows different profiles between appendiceal adenocarcinomas ex goblet cell carcinoids and appendiceal/colorectal conventional adenocarcinomas: An immunohistochemical study with comparison to CDX2

    Get PDF
    Background: Special AT-rich sequence-binding protein 2 (SATB2) is a novel marker for colorectal adenocarcinomas but little is known about its expression in appendiceal adenocarcinomas. We aim to investigate SATB2 in these tumors and colorectal adenocarcinomas with comparison to CDX2. Methods: Immunohistochemical stains for SATB2 and CDX2 were performed in 49 appendiceal adenocarcinomas (23 conventional, 26 adenocarcinoma ex goblet cell carcinoids (AdexGCCs)) and 57 colorectal adenocarcinomas. Their expression was correlated with tumor differentiation and growth patterns. Results: SATB2 staining was positive in 26/26 (100%) appendiceal AdexGCCs and 15/23 (65%) appendiceal conventional adenocarcinomas (P = 0.001). Their mean percentage of SATB2-positive cells was 93% and 34%, respectively (P \u3c 0.0001). CDX2 staining was seen in 26/26 (100%) AdexGCCs and 22/23 (96%) appendiceal conventional adenocarcinomas (P = 0.4694). SATB2 and CDX2 showed similar staining in AdexGCCs but CDX2 labeled more tumor cells than SATB2 in conventional adenocarcinomas (mean 84% vs. 34%, P \u3c 0.0001). SATB2 and CDX2 staining was seen in 82% (47/57) and 96% (55/57) colorectal adenocarcinomas, respectively (P = 0.01). The mean percentage of cells positive for SATB2 and CDX2 was 48% and 91%, respectively (P \u3c 0.00001). Decreased SATB2 immunoreactivity was associated with non-glandular differentiation particularly signet ring cells in colorectal (P = 0.001) and appendiceal conventional adenocarcinomas (P = 0.04) but not in appendiceal AdexGCCs. Conclusions: SATB2 is a highly sensitive marker for appendiceal AdexGCCs with similar sensitivity as CDX2. In colorectal and appendiceal conventional adenocarcinomas, SATB2 is not as sensitive as CDX2 and its immunoreactivity is dependent on tumor differentiation
    corecore