52 research outputs found

    Magnetic field dependence of the internal quality factor and noise performance of lumped-element kinetic inductance detectors

    Get PDF
    We present a technique for increasing the internal quality factor of kinetic inductance detectors (KIDs) by nulling ambient magnetic fields with a properly applied magnetic field. The KIDs used in this study are made from thin-film aluminum, they are mounted inside a light-tight package made from bulk aluminum, and they are operated near 150 mK150 \, \mathrm{mK}. Since the thin-film aluminum has a slightly elevated critical temperature (Tc=1.4 KT_\mathrm{c} = 1.4 \, \mathrm{K}), it therefore transitions before the package (Tc=1.2 KT_\mathrm{c} = 1.2 \, \mathrm{K}), which also serves as a magnetic shield. On cooldown, ambient magnetic fields as small as approximately 30 μT30 \, \mathrm{\mu T} can produce vortices in the thin-film aluminum as it transitions because the bulk aluminum package has not yet transitioned and therefore is not yet shielding. These vortices become trapped inside the aluminum package below 1.2 K1.2 \, \mathrm{K} and ultimately produce low internal quality factors in the thin-film superconducting resonators. We show that by controlling the strength of the magnetic field present when the thin film transitions, we can control the internal quality factor of the resonators. We also compare the noise performance with and without vortices present, and find no evidence for excess noise beyond the increase in amplifier noise, which is expected with increasing loss.Comment: 5 pages, 4 figure

    Tissue factor contributes to neutrophil CD11b expression in alpha-naphthylisothiocyanate-treated mice

    Get PDF
    Cholestatic liver injury induced by alpha-naphthylisothiocyanate (ANIT) is provoked by injury to intrahepatic bile ducts and the progression of hepatic necrosis requires the procoagulant protein tissue factor (TF) and extrahepatic cells including neutrophils. Recent studies have shown that myeloid cell TF contributes to neutrophil activation. We tested the hypothesis that myeloid cell TF contributes to neutrophil activation in ANIT-treated mice. TF activity in liver homogenates increased significantly in TFflox/flox mice treated with ANIT, but not in TFflox/flox/LysMCre mice (TFΔMyeloid mice), which have reduced TF expression in monocytes/macrophages and neutrophils. Myeloid cell-specific TF deficiency did not alter expression of the chemokines KC or MIP-2, but reduced hepatic neutrophil accumulation in ANIT-treated mice at 48 hours as indicated by tissue myeloperoxidase (MPO) activity. Myeloid cell TF deficiency significantly reduced CD11b expression by blood neutrophils in ANIT-treated mice and this was associated with reduced plasma MPO protein levels, an index of neutrophil degranulation. However, myeloid cell-specific TF deficiency had no effect on ANIT-induced coagulation cascade activation. The increase in serum ALT and ALP activities in ANIT-treated mice was reduced by myeloid cell TF deficiency (p<0.05), but the myeloid cell TF deficiency did not reduce hepatic necrosis at 48 hours, as determined by histopathology and morphometry. The results suggest that myeloid cell TF contributes to neutrophil CD11b expression during cholestasis by a coagulation-independent pathway. However, the resultant reduction in neutrophil accumulation/activation is insufficient to substantially reduce ANIT hepatotoxicity, suggesting that myeloid cell TF is only one of many factors modulating hepatic necrosis during cholestasis

    Association of genetic variants in complement factor H and factor H-related genes with systemic lupus erythematosus susceptibility

    Get PDF
    Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, Pmeta = 6.6×10-8, OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, Pmeta = 2.9×10-7, OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ~146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (Pmeta = 3.2×10-7, OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (Pmeta = 3.5×10-4, OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of complement regulators in the pathogenesis of SLE

    Immune reconstitution prevents continuous equine infectious anemia virus replication in an Arabian foal with severe combined immunodeficiency: Lessons for control of lentiviruses

    No full text
    Acute infection with equine infectious anemia virus (EIAV), a lentivirus of horses, results in a persistent high-level viremia in Arabian foals affected with severe combined immunodeficiency (SCID). This observation argues against the idea that the transient nature of acute lentiviral viremia is solely a function of viral population dynamics. To extend these studies, EIAV-specific immune reconstitution was attempted prior to EIAV challenge in 2 SCID foals, using adoptively transferred virus-stimulated lymphocytes derived from persistently EIAV-infected half sibling donors. Following transfer, lymphocyte engraftment occurred in 1 foal, and EIAV-specific cytotoxic T lymphocytes as well as neutralizing antibody activity developed. Following a brief period of plasma viremia in this foal, EIAV replication was controlled and plasma virus could not be detected by RT-PCR or culture. These results provide further direct evidence that a specific immune response is required for termination of plasma viremia in acute lentiviral infections

    Tissue factor-dependent coagulation contributes to α-naphthylisothiocyanate-induced cholestatic liver injury in mice

    No full text
    Separation of concentrated bile acids from hepatic parenchymal cells is a key function of the bile duct epithelial cells (BDECs) that form intrahepatic bile ducts. Using coimmunostaining, we found that tissue factor (TF), the principal activator of coagulation, colocalized with cytokeratin 19, a marker of BDECs in the adult mouse liver. BDEC injury induced by xenobiotics such as α-naphthylisothiocyanate (ANIT) causes cholestasis, inflammation, and hepatocellular injury. We tested the hypothesis that acute ANIT-induced cholestatic hepatitis is associated with TF-dependent activation of coagulation and determined the role of TF in ANIT hepatotoxicity. Treatment of mice with ANIT (60 mg/kg) caused multifocal hepatic necrosis and significantly increased serum biomarkers of cholestasis and hepatic parenchymal cell injury. ANIT treatment also significantly increased liver TF expression and activity. ANIT-induced activation of the coagulation cascade was shown by increased plasma thrombin-antithrombin levels and significant deposition of fibrin within the necrotic foci. ANIT-induced coagulation and liver injury were reduced in low-TF mice, which express 1% of normal TF levels. The results indicate that ANIT-induced liver injury is accompanied by TF-dependent activation of the coagulation cascade and that TF contributes to the progression of injury during acute cholestatic hepatitis
    • …
    corecore