193 research outputs found
Prehospital ticagrelor in ST-segment elevation myocardial infarction
Background:The direct-acting platelet P2Y receptor antagonist ticagrelor can reduce the incidence of major adverse cardiovascular events when administered at hospital admission to patients with ST-segment elevation myocardial infarction (STEMI). Whether prehospital administration of ticagrelor can improve coronary reperfusion and the clinical outcome is unknown. Methods: We conducted an international, multicenter, randomized, double-blind study involving 1862 patients with ongoing STEMI of less than 6 hours' duration, comparing prehospital (in the ambulance) versus in-hospital (in the catheterization laboratory) treatment with ticagrelor. The coprimary end points were the proportion of patients who did not have a 70% or greater resolution of ST-segment elevation before percutaneous coronary intervention (PCI) and the proportion of patients who did not have Thrombolysis in Myocardial Infarction flow grade 3 in the infarct-related artery at initial angiography. Secondary end points included the rates of major adverse cardiovascular events and definite stent thrombosis at 30 days. Results: The median time from randomization to angiography was 48 minutes, and the median time difference between the two treatment strategies was 31 minutes. The two coprimary end points did not differ significantly between the prehospital and in-hospital groups. The absence of ST-segment elevation resolution of 70% or greater after PCI (a secondary end point) was reported for 42.5% and 47.5% of the patients, respectively. The rates of major adverse cardiovascular events did not differ significantly between the two study groups. The rates of definite stent thrombosis were lower in the prehospital group than in the in-hospital group (0% vs. 0.8% in the first 24 hours; 0.2% vs. 1.2% at 30 days). Rates of major bleeding events were low and virtually identical in the two groups, regardless of the bleeding definition use
Contributions of chaperone/usher systems to cell binding, biofilm formation and Yersinia pestis virulence
Yersinia pestis genome sequencing projects have revealed six intact uncharacterized chaperone/
usher systems with the potential to play roles in plague pathogenesis. We cloned each locus and
expressed them in the Deltafim Escherichia coli strain AAEC185 to test the assembled Y. pestis
surface structures for various activities. Expression of each chaperone/usher locus gave rise to
specific novel fibrillar structures on the surface of E. coli. One locus, y0561-0563, was able to
mediate attachment to human epithelial cells (HEp-2) and human macrophages (THP-1) but not
mouse macrophages (RAW264.7), while several loci were able to facilitate E. coli biofilm
formation. When each chaperone/usher locus was deleted in Y. pestis, only deletion of the
previously described pH 6 antigen (Psa) chaperone/usher system resulted in decreased adhesion
and biofilm formation. Quantitative RT-PCR (qRT-PCR) revealed low expression levels for each
novel chaperone/usher system in vitro as well as in mouse tissues following intravenous infection.
However, a Y. pestis mutant in the chaperone/usher locus y1858-1862 was attenuated for
virulence in mice via the intravenous route of infection, suggesting that expression of this locus is,
at some stage, sufficient to affect the outcome of a plague infection. qRT-PCR experiments also
indicated that expression of the chaperone/usher-dependent capsule locus, caf1, was influenced
by oxygen availability and that the well-described chaperone/usher-dependent pilus, Psa, was
strongly induced in minimal medium even at 28 degrees C rather than 37 degrees C, a temperature previously
believed to be required for Psa expression. These data indicate several potential roles for the
novel chaperone/usher systems of Y. pestis in pathogenesis and infection-related functions such
as cell adhesion and biofilm formation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91950/1/2011 Microbiology - Contributions of chaperone usher systems to cell binding biofilm formation and Yersinia pestis virulence.pd
Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism
SummaryWe have undertaken a genome-wide analysis of rare copy-number variation (CNV) in 1124 autism spectrum disorder (ASD) families, each comprised of a single proband, unaffected parents, and, in most kindreds, an unaffected sibling. We find significant association of ASD with de novo duplications of 7q11.23, where the reciprocal deletion causes Williams-Beuren syndrome, characterized by a highly social personality. We identify rare recurrent de novo CNVs at five additional regions, including 16p13.2 (encompassing genes USP7 and C16orf72) and Cadherin 13, and implement a rigorous approach to evaluating the statistical significance of these observations. Overall, large de novo CNVs, particularly those encompassing multiple genes, confer substantial risks (OR = 5.6; CI = 2.6–12.0, p = 2.4 × 10-7). We estimate there are 130–234 ASD-related CNV regions in the human genome and present compelling evidence, based on cumulative data, for association of rare de novo events at 7q11.23, 15q11.2-13.1, 16p11.2, and Neurexin 1
Age at first birth in women is genetically associated with increased risk of schizophrenia
Prof. Paunio on PGC:n jäsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe
A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder
Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data
Gene expression imputation across multiple brain regions provides insights into schizophrenia risk
Transcriptomic imputation approaches combine eQTL reference panels with large-scale genotype data in order to test associations between disease and gene expression. These genic associations could elucidate signals in complex genome-wide association study (GWAS) loci and may disentangle the role of different tissues in disease development. We used the largest eQTL reference panel for the dorso-lateral prefrontal cortex (DLPFC) to create a set of gene expression predictors and demonstrate their utility. We applied DLPFC and 12 GTEx-brain predictors to 40,299 schizophrenia cases and 65,264 matched controls for a large transcriptomic imputation study of schizophrenia. We identified 413 genic associations across 13 brain regions. Stepwise conditioning identified 67 non-MHC genes, of which 14 did not fall within previous GWAS loci. We identified 36 significantly enriched pathways, including hexosaminidase-A deficiency, and multiple porphyric disorder pathways. We investigated developmental expression patterns among the 67 non-MHC genes and identified specific groups of pre- and postnatal expression
Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects
Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (OR=1.11, P=5.7×10−15), which persisted after excluding loci implicated in previous studies (OR=1.07, P=1.7 ×10−6). CNV burden was enriched for genes associated with synaptic function (OR = 1.68, P = 2.8 ×10−11) and neurobehavioral phenotypes in mouse (OR = 1.18, P= 7.3 ×10−5). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by non-allelic homologous recombination
No Reliable Association between Runs of Homozygosity and Schizophrenia in a Well-Powered Replication Study
It is well known that inbreeding increases the risk of recessive monogenic diseases, but it is less certain whether it contributes to the etiology of complex diseases such as schizophrenia. One way to estimate the effects of inbreeding is to examine the association between disease diagnosis and genome-wide autozygosity estimated using runs of homozygosity (ROH) in genome-wide single nucleotide polymorphism arrays. Using data for schizophrenia from the Psychiatric Genomics Consortium (n = 21,868), Keller et al. (2012) estimated that the odds of developing schizophrenia increased by approximately 17% for every additional percent of the genome that is autozygous (β = 16.1, CI(β) = [6.93, 25.7], Z = 3.44, p = 0.0006). Here we describe replication results from 22 independent schizophrenia case-control datasets from the Psychiatric Genomics Consortium (n = 39,830). Using the same ROH calling thresholds and procedures as Keller et al. (2012), we were unable to replicate the significant association between ROH burden and schizophrenia in the independent PGC phase II data, although the effect was in the predicted direction, and the combined (original + replication) dataset yielded an attenuated but significant relationship between Froh and schizophrenia (β = 4.86,CI(β) = [0.90,8.83],Z = 2.40,p = 0.02). Since Keller et al. (2012), several studies reported inconsistent association of ROH burden with complex traits, particularly in case-control data. These conflicting results might suggest that the effects of autozygosity are confounded by various factors, such as socioeconomic status, education, urbanicity, and religiosity, which may be associated with both real inbreeding and the outcome measures of interest
Genetic correlation between amyotrophic lateral sclerosis and schizophrenia
A. Palotie on työryhmän Schizophrenia Working Grp Psychiat jäsen.We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05-21.6; P = 1 x 10(-4)) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P = 8.4 x 10(-7)). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08-1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies.Peer reviewe
- …