75 research outputs found

    Physical model for the gating mechanism of ionic channels

    Get PDF
    We propose a physical model for the gating mechanism of ionic channels. First, we investigate the fluctuation-mediated interactions between two proteins imbedded in a cellular membrane and find that the interaction depends on their orientational configuration as well as the distance between them. The orientational dependence of interactions arises from the fact that the noncircular cross-sectional shapes of individual proteins constrain fluctuations of the membrane differently according to their orientational configuration. Then, we apply these interactions to ionic channels composed of four, five, and six proteins. As the gating stimulus creates the changes in the structural shape of proteins composing ionic channels, the orientational configuration of the ionic channels changes due to the free energy minimization, and ionic channels are open or closed according to the conformation thereof.open3

    Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure

    Get PDF
    Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies
    corecore