3,433 research outputs found
Structure determination of Split-soret Cytochrome from a Desulfovibrio species isolated from a human abdominal abcess
The determined structure of the split-soret cytochrome (SSC) isolated from Desulfovibrio desulfuricans ATCC 27774 (D.d.) revealed a new Heme arrangement, which suggests that this protein constitutes a new cytochrome class.. SSC is a 52.6kDa homodimer containing four hemes at one end of the molecule. In each monomer the two hemes have their edges overlapped within van der Waals contacts. The polypeptide chain of each monomer supplies the sixth ligand to the heme-iron of the other monomer. A similar protein was recently purified from a homologous Desulfovibrio clinical strain isolated from an abdominal wall abscess in human patient2. Crystals of this SSC were grown using vapour diffusion method in the presence of agarose gel. Diffraction data were collected using X-ray synchrotron radiation at the ESRF, beamline, ID 14-1. The structure will be solved by molecular replacement using the structure of the D.d. as a starting model
Probing the Structure of Halo Nuclei
Our understanding of halo nuclei has so far relied on high-energy scattering
and reactions, but a number of uncertainties remain. I discuss in general terms
the new range of observables which will be measured by experiments around the
Coulomb barrier, and how some details of the reaction mechanisms still need to
be clarified.Comment: Proceedings of FUSION97 conference (March 1997), South Durras,
Australia. Submitted to J. Physics G: special issue `Heavy ion collisions at
near barrier energies'. No figures; uses IOPConf.sty (included
The mean energy, strength and width of triple giant dipole resonances
We investigate the mean energy, strength and width of the triple giant dipole
resonance using sum rules.Comment: 12 page
Accretion Disks Around Young Objects. II. Tests of Well-Mixed Models with Ism Dust
We construct detailed vertical structure models of irradiated accretion disks
around T Tauri stars with interstellar medium dust uniformly mixed with gas.
The dependence of the structure and emission properties on mass accretion rate,
viscosity parameter, and disk radius is explored using these models. The
theoretical spectral energy distributions (SEDs) and images for all
inclinations are compared with observations of the entire population of
Classical T Tauri stars (CTTS) and Class I objects in Taurus. In particular, we
find that the median near-infrared fluxes can be explained within the errors
with the most recent values for the median accretion rates for CTTS. We further
show that the majority of the Class I sources in Taurus cannot be Class II
sources viewed edge-on because they are too luminous and their colors would be
consistent with disks seen only in a narrow range of inclinations. Our models
appear to be too geometrically thick at large radii, as suggested by: (a)
larger far-infrared disk emission than in the typical SEDs of T Tauri stars;
(b) wider dark dust lanes in the model images than in the images of HH30 and HK
Tau/c; and (c) larger predicted number of stars extincted by edge-on disks than
consistent with current surveys. The large thickness of the model is a
consequence of the assumption that dust and gas are well-mixed, suggesting that
some degree of dust settling may be required to explain the observations.Comment: 41 pages, 13 figures, accepted in Ap
Stellar parameters for stars of the CoRoT exoplanet field
Aims:To support the computation and evolutionary interpretation of periods
associated with the rotational modulation, oscillations, and variability of
stars located in the CoRoT fields, we are conducting a spectroscopic survey for
stars located in the fields already observed by the satellite. These
observations allow us to compute physical and chemical parameters for our
stellar sample. Method: Using spectroscopic observations obtained with UVES/VLT
and Hydra/Blanco, and based on standard analysis techniques, we computed
physical and chemical parameters (, , ,
, , , and ) for a large
sample of CoRoT targets. Results: We provide physical and chemical parameters
for a sample comprised of 138 CoRoT targets. Our analysis shows the stars in
our sample are located in different evolutionary stages, ranging from the main
sequence to the red giant branch, and range in spectral type from F to K. The
physical and chemical properties for the stellar sample are in agreement with
typical values reported for FGK stars. However, we report three stars
presenting abnormal lithium behavior in the CoRoT fields. These parameters
allow us to properly characterize the intrinsic properties of the stars in
these fields. Our results reveal important differences in the distributions of
metallicity, , and evolutionary status for stars belonging to
different CoRoT fields, in agreement with results obtained independently from
ground-based photometric surveys. Conclusions: Our spectroscopic catalog, by
providing much-needed spectroscopic information for a large sample of CoRoT
targets, will be of key importance for the successful accomplishment of several
different programs related to the CoRoT mission, thus it will help further
boost the scientific return associated with this space mission.Comment: 43 pages, 17 figures, accepted for publication in A&
Accretion Disks around Young Objects. I. The Detailed Vertical Structure
We discuss the properties of an accretion disk around a star with parameters
typical of classical T Tauri stars (CTTS), and with the average accretion rate
for these disks. The disk is assumed steady and geometrically thin. The
turbulent viscosity coefficient is expressed using the alpha prescription and
the main heating mechanisms considered are viscous dissipation and irradiation
by the central star. The energy is transported by radiation, turbulent
conduction and convection.
We find that irradiation from the central star is the main heating agent of
the disk, except in the innermost regions, R less than 2 AU. The irradiation
increases the temperature of the outer disk relative to the purely viscous
case. As a consequence, the outer disk (R larger than 5 AU) becomes less dense,
optically thin and almost vertically isothermal, with a temperature
distribution T proportional to R^{-1/2}. The decrease in surface density at the
outer disk, decreases the disk mass by a factor of 4 respect to a purely
viscous case. In addition, irradiation tends to make the outer disk regions
stable against gravitational instabilities.Comment: 41 pages, 14 postscript figures, LaTeX, accepted by Ap
The variability behavior of CoRoT M-giant Stars
For 6 years the Convection, Rotation, and Planetary Transits (CoRoT) space
mission has acquired photometric data from more than one hundred thousand point
sources towards and directly opposite from the inner and outer regions of the
Galaxy. The high temporal resolution of the CoRoT data combined with the wide
time span of the observations has enabled the study of short and long time
variations in unprecedented detail. From the initial sample of 2534 stars
classified as M-giants in the CoRoT databasis, we selected 1428 targets that
exhibit well defined variability, using visual inspection. The variability
period and amplitude of C1 stars (stars having Teff < 4200 K) were computed
using Lomb-Scargle and harmonic fit methods. The trends found in the V-I vs J-K
color-color diagram are in agreement with standard empirical calibrations for
M-giants. The sources located towards the inner regions of the Galaxy are
distributed throughout the diagram while the majority of the stars towards the
outer regions of the Galaxy are spread between the calibrations of M-giants and
the predicted position for Carbon stars. The stars classified as supergiants
follow a different sequence from the one found for giant stars. We also
performed a KS test of the period and amplitude of stars towards the inner and
outer regions of the Galaxy. We obtained a low probability that the two samples
come from the same parent distribution. The observed behavior of the
period-amplitude and period-Teff diagrams are, in general, in agreement with
those found for Kepler sources and ground based photometry, with pulsation
being the dominant cause responsible for the observed modulation. We also
conclude that short-time variations on M-Giant stars do not exist orare very
rare and the few cases we found are possibly related to biases or background
stars.Comment: 11 pages, 6 figure
- …