14 research outputs found

    Polycystin-2 (TRPP2) regulation by Ca2+ is effected and diversified by actin-binding proteins

    Get PDF
    Calcium regulation of Ca2+-permeable ion channels is an important mechanism in the control of cell function. Polycystin-2 (PC2, TRPP2), a member of the transient receptor potential superfamily, is a nonselective cation channel with Ca2+ permeability. The molecular mechanisms associated with PC2 regulation by Ca2+ remain ill-defined. We recently demonstrated that PC2 from human syncytiotrophoblast (PC2hst) but not the in vitro translated protein (PC2iv), functionally responds to changes in intracellular (cis) Ca2+. In this study we determined the regulatory effect(s) of Ca2+-sensitive and -insensitive actin-binding proteins (ABPs) on PC2iv channel function in a lipid bilayer system. The actin-bundling protein α-actinin increased PC2iv channel function in the presence of cis Ca2+, although instead was inhibitory in its absence. Conversely, filamin that shares actin-binding domains with α-actinin had a strong inhibitory effect on PC2iv channel function in the presence, but no effect in the absence of cis Ca2+. Gelsolin stimulated PC2iv channel function in the presence, but not the absence of cis Ca2+. In contrast, profilin that shares actin-binding domains with gelsolin, significantly increased PC2iv channel function both in the presence and absence of Ca2+. The distinct effect(s) of the ABPs on PC2iv channel function demonstrate that Ca2+ regulation of PC2 is actually mediated by direct interaction(s) with structural elements of the actin cytoskeleton. These data indicate that specific ABP-PC2 complexes would confer distinct Ca2+-sensitive properties to the channel providing functional diversity to the cytoskeletal control of transient receptor potential channel regulation.Fil: Cantero, Maria del Rocio. Universidad de Buenos Aires. Facultad de Odontologia. Cåtedra de Biofísica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cantiello, Horacio Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Odontologia. Cåtedra de Biofísica; Argentin

    Polycystin-2 (TRPP2) regulates primary cilium length in LLC-PK1 renal epithelial cells

    Get PDF
    Polycystin-2 (PC2, TRPP2) is a Ca2+ permeable nonselective cation channel whose dysfunction generates autosomal dominant polycystic kidney disease (ADPKD). PC2 is present in different cell locations, including the primary cilium of renal epithelial cells. However, little is known as to whether PC2 contributes to the primary cilium structure. Here, we explored the effect(s) of external Ca2+, PC2 channel blockers, and PKD2 gene silencing on the length of primary cilia in wild-type LLC-PK1 renal epithelial cells. Confluent cell monolayers were fixed and immuno-labeled with an anti-acetylated α-tubulin antibody to identify primary cilia and measure their length. Although primary cilia length measurements did not follow a Normal distribution, the data were normalized by Box-Cox transformation rendering statistical differences under all experimental conditions. Cells exposed to high external Ca2+ (6.2 mM) decreased a 13.5% (p < 0.001) primary cilia length as compared to controls (1.2 mM Ca2+). In contrast, the PC2 inhibitors amiloride (200 ΌM) and LiCl (10 mM), both increased primary ciliary length by 33.2% (p < 0.001), and 17.4% (p < 0.001), respectively. PKD2 gene silencing by siRNA elicited a statistically significant, 10.3% (p < 0.001) increase in primary cilia length compared to their respective scrambled RNA transfected cells. The data indicate that conditions that regulate PC2 function or gene expression modify the length of primary cilia in renal epithelial cells. Blocking of PC2 mitigates the effects of elevated external Ca2+ concentration on primary cilia length. Proper regulation of PC2 function in the primary cilium may be essential in the onset of mechanisms that trigger cyst formation in ADPKD.Fil: Scarinci, MarĂ­a Noelia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet Noa Sur. Instituto Multidisciplinario de Salud, TecnologĂ­a y Desarrollo. - Universidad Nacional de Santiago del Estero. Instituto Multidisciplinario de Salud, TecnologĂ­a y Desarrollo; ArgentinaFil: PĂ©rez, Paula Luciana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet Noa Sur. Instituto Multidisciplinario de Salud, TecnologĂ­a y Desarrollo. - Universidad Nacional de Santiago del Estero. Instituto Multidisciplinario de Salud, TecnologĂ­a y Desarrollo; ArgentinaFil: Cantiello, Horacio Fabio. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet Noa Sur. Instituto Multidisciplinario de Salud, TecnologĂ­a y Desarrollo. - Universidad Nacional de Santiago del Estero. Instituto Multidisciplinario de Salud, TecnologĂ­a y Desarrollo; ArgentinaFil: Cantero, Maria del Rocio. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet Noa Sur. Instituto Multidisciplinario de Salud, TecnologĂ­a y Desarrollo. - Universidad Nacional de Santiago del Estero. Instituto Multidisciplinario de Salud, TecnologĂ­a y Desarrollo; Argentin

    Electrical Oscillations in Two-Dimensional Microtubular Structures

    Get PDF
    Microtubules (MTs) are unique components of the cytoskeleton formed by hollow cylindrical structures of αÎČ tubulin dimeric units. The structural wall of the MT is interspersed by nanopores formed by the lateral arrangement of its subunits. MTs are also highly charged polar polyelectrolytes, capable of amplifying electrical signals. The actual nature of these electrodynamic capabilities remains largely unknown. Herein we applied the patch clamp technique to two-dimensional MT sheets, to characterize their electrical properties. Voltage-clamped MT sheets generated cation-selective oscillatory electrical currents whose magnitude depended on both the holding potential, and ionic strength and composition. The oscillations progressed through various modes including single and double periodic regimes and more complex behaviours, being prominent a fundamental frequency at 29 Hz. In physiological K+ (140 mM), oscillations represented in average a 640% change in conductance that was also affected by the prevalent anion. Current injection induced voltage oscillations, thus showing excitability akin with action potentials. The electrical oscillations were entirely blocked by taxol, with pseudo Michaelis-Menten kinetics and a KD of ~1.29 ΌM. The findings suggest a functional role of the nanopores in the MT wall on the genesis of electrical oscillations that offer new insights into the nonlinear behaviour of the cytoskeleton.Fil: Cantero, Maria del Rocio. Universidad de Buenos Aires. Facultad de OdontologĂ­a; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: PĂ©rez, Paula Luciana. Universidad de Buenos Aires. Facultad de OdontologĂ­a; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Smoler, Mariano. Universidad de Buenos Aires. Facultad de OdontologĂ­a; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Villa Etchegoyen, Cecilia. Universidad de Buenos Aires. Facultad de OdontologĂ­a; ArgentinaFil: Cantiello, Horacio Fabio. Universidad de Buenos Aires. Facultad de OdontologĂ­a; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentin

    The cAMP Signaling pathway and direct protein kinase a phosphorylation regulate polycystin-2 (TRPP2) Channel Function

    Get PDF
    Polycystin-2 (PC2) is aTRP-type, Ca2+-permeable non-selective cation channel that plays an important role in Ca2+ signaling in renal and non-renal cells. The effect(s) of the cAMP pathway and kinase mediated phosphorylation of PC2 seem to be relevant to PC2 trafficking and its interaction with polycystin-1. However, the role of PC2 phosphorylation in channel function is still poorly defined. Here we reconstituted apical membranes of term human syncytiotrophoblast (hST), containing endogenous PC2 (PC2hst), and in vitro translated channel protein (PC2iv). Addition of the catalytic subunit of PKA increased by 566% the spontaneous PC2hst channel activity in the presence of ATP. Interestingly, 8-Br-cAMP also stimulated spontaneous PC2hst channel activity in the absence of the exogenous kinase. Either stimulation was inhibited by addition of alkaline phosphatase, which in turn, was reversed by the phosphatase inhibitor vanadate. Neither maneuver modified the single channel conductance but instead increased channel mean open time. PKA directly phosphorylated PC2, which increased the mean open time but not the single channel conductance of the channel. PKA phosphorylation did not modify either R742X truncated or S829A-mutant PC2iv channel function. The data indicate that the cAMP pathway regulates PC2-mediated cation transport in the hST. The relevant PKA site for PC2 channel regulation centers on a single residue serine 829, in the carboxyl terminus.Fil: Cantero, Maria del Rocio. Universidad de Buenos Aires. Facultad de OdontologĂ­a. CĂĄtedra de BiofĂ­sica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: VelĂĄzquez, Irina Florencia. Universidad de Buenos Aires. Facultad de OdontologĂ­a. CĂĄtedra de BiofĂ­sica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Streets, Andrew J.. University of Sheffield Medical School; Reino UnidoFil: Ong, Albert C. M.. University of Sheffield Medical School; Reino UnidoFil: Cantiello, Horacio Fabio. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de OdontologĂ­a. CĂĄtedra de BiofĂ­sica; Argentin

    Electrical recordings from dendritic spines of adult mouse hippocampus and effect of the actin cytoskeleton

    Get PDF
    Dendritic spines (DS) are tiny protrusions implicated in excitatory postsynaptic responses in the CNS. To achieve their function, DS concentrate a high density of ion channels and dynamic actin networks in a tiny specialized compartment. However, to date there is no direct information on DS ionic conductances. Here, we used several experimental techniques to obtain direct electrical information from DS of the adult mouse hippocampus. First, we optimized a method to isolate DS from the dissected hippocampus. Second, we used the lipid bilayer membrane (BLM) reconstitution and patch clamping techniques and obtained heretofore unavailable electrical phenotypes on ion channels present in the DS membrane. Third, we also patch clamped DS directly in cultured adult mouse hippocampal neurons, to validate the electrical information observed with the isolated preparation. Electron microscopy and immunochemistry of PDS-95 and NMDA receptors and intrinsic actin networks confirmed the enrichment of the isolated DS preparation, showing open and closed DS, and multi-headed DS. The preparation was used to identify single channel activities and “whole-DS” electrical conductance. We identified NMDA and Ca2+-dependent intrinsic electrical activity in isolated DS and in situ DS of cultured adult mouse hippocampal neurons. In situ recordings in the presence of local NMDA, showed that individual DS intrinsic electrical activity often back-propagated to the dendrite from which it sprouted. The DS electrical oscillations were modulated by changes in actin cytoskeleton dynamics by addition of the F-actin disrupter agent, cytochalasin D, and exogenous actin-binding proteins. The data indicate that DS are elaborate excitable electrical devices, whose activity is a functional interplay between ion channels and the underlying actin networks. The data argue in favor of the active contribution of individual DS to the electrical activity of neurons at the level of both the membrane conductance and cytoskeletal signaling.Fil: Priel, Avner. Bar-Ilan University; IsraelFil: Dai, Xiao Qing. University of Alberta; CanadáFil: Chen, Xing-Zhen. University of Alberta; CanadáFil: Scarinci, María Noelia. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet Noa Sur. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo. - Universidad Nacional de Santiago del Estero. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo.; ArgentinaFil: Cantero, Maria del Rocio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet Noa Sur. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo. - Universidad Nacional de Santiago del Estero. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo.; ArgentinaFil: Cantiello, Horacio Fabio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet Noa Sur. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo. - Universidad Nacional de Santiago del Estero. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo.; Argentin

    Vasopressin receptor-mediated functional signaling pathway in primary cilia of renal epithelial cells

    Get PDF
    The primary cilium of renal epithelial cells is a nonmotile sensory organelle, implicated in mechanosensory transduction signals. Recent studies from our laboratory indicate that renal epithelial primary cilia display abundant channel activity; however, the presence and functional role of specific membrane receptors in this organelle are heretofore unknown. Here, we determined a functional signaling pathway associated with the type 2 vasopressin receptor (V2R) in primary cilia of renal epithelial cells. Besides their normal localization on basolateral membrane, V2R was expressed in primary cilia of LLC-PK1 renal epithelial cells. The presence of V2R in primary cilia was determined by spontaneous fluorescence of a V2R-gfp chimera and confirmed by immunocytochemical analysis of wild-type LLC-PK1 cells stained with anti-V2R antibodies and in LLC-PK1 cells overexpressing the V2R-Flag, with anti-Flag antibody. Ciliary V2R colocalized with adenylyl cyclase (AC) type V/VI in all cell types tested. Functional coupling of the receptors with AC was confirmed by measurement of cAMP production in isolated cilia and by testing AVP-induced cation-selective channel activity either in reconstituted lipid bilayers or subjected to membrane-attached patch clamping. Addition of either 10 ÎŒM AVP (trans) or forskolin (cis) in the presence but not the absence of ATP (1 mM, cis) stimulated cation-selective channel activity in ciliary membranes. This channel activity was reduced by addition of the PKA inhibitor PKI. The data provide the first demonstration for the presence of V2R in primary cilia of renal epithelial cells, and a functional cAMP-signaling pathway, which targets ciliary channel function and may help control the sensory function of the primary cilium.Fil: Raychowdhury, Malay K.. Massachusetts General Hospital; Estados Unidos. Harvard Medical School; Estados UnidosFil: Ramos, Arnolt J.. Massachusetts General Hospital; Estados Unidos. Harvard Medical School; Estados UnidosFil: Zhang, Peng. Massachusetts General Hospital; Estados Unidos. Harvard Medical School; Estados UnidosFil: McLaughin, Margaret. Harvard Medical School; Estados Unidos. Massachusetts General Hospital; Estados UnidosFil: Dai, Xiao-Qing. University of Alberta; CanadĂĄFil: Chen, Xing-Zhen. University of Alberta; CanadĂĄFil: Montalbetti, Nicolas. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones CardiolĂłgicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones CardiolĂłgicas; ArgentinaFil: Cantero, Maria del Rocio. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones CardiolĂłgicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones CardiolĂłgicas; ArgentinaFil: Ausiello, Dennis A.. Massachusetts General Hospital; Estados Unidos. Harvard Medical School; Estados UnidosFil: Cantiello, Horacio Fabio. Massachusetts General Hospital; Estados Unidos. Harvard Medical School; Estados Unidos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones CardiolĂłgicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones CardiolĂłgicas; Argentin

    Polycystin-2 (TRPP2): Ion channel properties and regulation

    No full text
    Polycystin-2 (TRPP2, PKD2, PC2) is the product of the PKD2 gene, whose mutations cause Autosomal Dominant Polycystic Kidney Disease (ADPKD). PC2 belongs to the superfamily of TRP (Transient Receptor Potential) proteins that generally function as Ca2+-permeable nonselective cation channels implicated in Ca2+ signaling. PC2 localizes to various cell domains with distinct functions that likely depend on interactions with specific channel partners. Functions include receptor-operated, nonselective cation channel activity in the plasma membrane, intracellular Ca2+ release channel activity in the endoplasmic reticulum (ER), and mechanosensitive channel activity in the primary cilium of renal epithelial cells. Here we summarize our current understanding of the properties of PC2 and how other transmembrane and cytosolic proteins modulate this activity, providing functional diversity and selective regulatory mechanisms to its role in the control of cellular Ca2+ homeostasis.Fil: Cantero, Maria del Rocio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet Noa Sur. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo. - Universidad Nacional de Santiago del Estero. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo.; ArgentinaFil: Cantiello, Horacio Fabio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet Noa Sur. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo. - Universidad Nacional de Santiago del Estero. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo.; Argentin

    Effect of lithium on the electrical properties of polycystin-2 (TRPP2)

    Get PDF
    Polycystin-2 (PC2, TRPP2) is a TRP-type, non-selective cation channel whose dysfunction is implicated in changes in primary cilium structure and genesis of autosomal dominant polycystic kidney disease (ADPKD). Lithium (Li+) is a potent pharmaceutical agent whose effect on cell function is largely unknown. In this work, we explored the effect of Li+ on PC2 channel function. In vitro translated PC2 was studied in a lipid bilayer reconstitution system exposed to different chemical conditions such as Li+ or K+ chemical gradients and different symmetrical concentrations of either cation. Li+ inhibited PC2 function only from the external side, by decreasing the single-channel conductance and modifying the reversal potential consistent with both permeability to and blockage of the channel. When a chemical gradient was imposed, the PC2 single-channel conductance was 144 pS and 107 pS for either K+ or Li+, respectively. Data were analysed in terms of the Goldman–Hodgkin–Katz approximation and energy models based on absolute rate theory to understand the mechanism(s) of Li+ transport and blockage of PC2. The 2S3B model better explained the findings, including saturation, anomalous mole fraction, non-linearity of the current–voltage curves under bi-ionic conditions and concentration dependence of permeability ratios. The data indicate that Li+ modifies PC2 channel function, whose effect unmasks a high-affinity binding site for this ion, and an intrinsic asymmetry in the pore structure of the channel. The findings provide insights into possible mechanism(s) of Li+ regulation of ciliary length and dysfunction mediated by this cation.Fil: Cantero, Maria del Rocio. Universidad de Buenos Aires. Facultad de OdontologĂ­a; ArgentinaFil: Cantiello, Horacio Fabio. Harvard University; Estados Unidos. Massachusetts General Hospital East; Estados Unidos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentin

    Brain Microtubule Electrical Oscillations-Empirical Mode Decomposition Analysis

    No full text
    Microtubules (MTs) are essential cytoskeletal polymers of eukaryote cells implicated in various cell functions, including cell division, cargo transfer, and cell signaling. MTs also are highly charged polymers that generate electrical oscillations that may underlie their ability to act as nonlinear transmission lines. However, the oscillatory composition and time–frequency differences of the MT electrical oscillations have not been identified. Here, we applied the Empirical Mode Decomposition (EMD) to bovine brain MT sheet recordings to determine the number and fundamental frequencies of the Intrinsic Modes Functions (IMF) and evaluate their energetic contribution to the electrical signal. As previously reported, raw signals were obtained from cow brain MTs (Cantero et al. Sci Rep 6:27143, 2016), sampled, filtered, and subjected to signal decomposition from representative experiments. Filtered signals (200 Hz) allowed us to identify either six or seven IMFs. The reconstructed tracings faithfully resembled the original signals, with identifiable frequency peaks. To extend the analysis to obtain time–frequency information and the energy implicated in each IMF, we applied the Hilbert–Huang Transform (HHT) and the Continuous Wavelet Transform (CWT) to the same samples. The analyses disclosed the presence of more fundamental frequency peaks than initially reported and evidenced the advantages and disadvantages of each transform. The study indicates that the EMD is a robust approach to quantifying signal decomposition of brain MT oscillations and suggests novel similarities with human brain wave electroencephalogram (EEG) recordings. The evidence points to the potentially fundamental role of MT oscillations in brain electrical activity.Fil: Scarinci, María Noelia. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet Noa Sur. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo. - Universidad Nacional de Santiago del Estero. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo.; ArgentinaFil: Priel, Avner. Bar-Ilan University; IsraelFil: Cantero, Maria del Rocio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet Noa Sur. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo. - Universidad Nacional de Santiago del Estero. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo.; ArgentinaFil: Cantiello, Horacio Fabio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet Noa Sur. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo. - Universidad Nacional de Santiago del Estero. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo.; Argentin

    Role of the microtubules in the electrical activity of the primary cilium of renal epithelial cells

    Get PDF
    The primary cilium is a non-motile sensory organelle that transduces environmental cues into cellular responses. It comprises an axoneme, a core of nine doublet microtubules (MTs) coated by a specialized membrane populated by receptors, and a high density of ion channels. Dysfunctional primary cilia generate the pathogenesis of several diseases known as ciliopathies. However, the electrical role of MTs in ciliary signaling remains largely unknown. Herein, we determined by the patch clamp technique the electrical activity of cytoplasmic and axonemal MTs from wild-type LLC-PK1 renal epithelial cells. We observed electrical oscillations with fundamental frequencies at ∌39 Hz and ∌93 Hz in sheets of cytoplasmic MTs. We also studied in situ and isolated, intact and Triton X-permeabilized primary cilia, observing electrical oscillations with peak frequencies at either 29–49 Hz (non-permeabilized) or ∌40–49 Hz (permeabilized) and ∌93 Hz (both). We applied Empirical Mode Decomposition (EMD), Continuous Wavelet Transform (CWT), and Cross-Correlation Analysis (CCA) to assess the differences and the coherence in the Time-Frequency domains of electrical oscillations between cytoplasmic and axonemal MTs. The data indicate that axonemal and cytoplasmic MTs show different patterns of electrical oscillations preserving coherence at specific frequency peaks that may serve as electromagnetic communication between compartments. Further, the electrical behavior of axonemal MTs was modified by siRNA deletion of polycystin-2 (PC2), which lengthens primary cilia, thus linking ciliary channels to the morphological and electrical behavior of cilia in ciliopathies. The encompassed evidence indicates that the primary cilium behaves as an electrical antenna, with an excitable MT structure that produces electrical oscillations whose synchronization and propagation constitute a novel cell signaling mechanism.Fil: Scarinci, MarĂ­a Noelia. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet Noa Sur. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo. - Universidad Nacional de Santiago del Estero. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo.; ArgentinaFil: Gutierrez, Brenda Celeste. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet Noa Sur. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo. - Universidad Nacional de Santiago del Estero. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo.; ArgentinaFil: AlbarracĂ­n, Virginia Helena. Universidad Nacional de TucumĂĄn; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Cantero, Maria del Rocio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet Noa Sur. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo. - Universidad Nacional de Santiago del Estero. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo.; ArgentinaFil: Cantiello, Horacio Fabio. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet Noa Sur. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo. - Universidad Nacional de Santiago del Estero. Instituto Multidisciplinario de Salud, Tecnologia y Desarrollo.; Argentin
    corecore