3 research outputs found

    Microwave probes Dipole Blockade and van der Waals Forces in a Cold Rydberg Gas

    Full text link
    We show that microwave spectroscopy of a dense Rydberg gas trapped on a superconducting atom chip in the dipole blockade regime reveals directly the dipole-dipole many-body interaction energy spectrum. We use this method to investigate the expansion of the Rydberg cloud under the effect of repulsive van der Waals forces and the breakdown of the frozen gas approximation. This study opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atoms.Comment: PACS: 03.67.-a, 32.80.Ee, 32.30.-

    Long coherence times for Rydberg qubits on a superconducting atom chip

    Get PDF
    International audienceSuperconducting atom chips and Rydberg atoms are promising tools for quantum information processing operations based on the dipole blockade effect. Nevertheless, one has to face the severe problem of stray electric fields in the vicinity of the chip. We demonstrate a simple method circumventing this problem. Microwave spectroscopy reveals extremely long coherence lifetimes (in the millisecond range) for a qubit stored in a Rydberg level superposition close to the chip surface. This is an essential step for the development of quantum simulation with Rydberg atoms and of a hybrid quantum information architecture based on atomic ensembles and superconducting circuits
    corecore