4 research outputs found

    Molecular identification and lipolytic potential of filamentous fungi isolated from residual cooking oil

    No full text
    Filamentous fungi, microorganisms that develop and are located in different habitats, are considered important producers of enzymes and metabolites with potential for the biotechnology industry. The objective of this work was to isolate and identify filamentous fungi that grow in used oil. Two fungal species were characterised through their morphology and molecular identification. The DNA of each extracted strain was amplified by PCR using primers ITS1 and ITS4, obtaining sequences that were later in GenBank (NCBI). A white coloured strain (HB) with a cottony, white, hyaline morphology and irregular borders was observed; so too, a brown colony (HC) with a sandy surface, a well-defined border of beige colour in early growth until it became a dark brown colour. The identity result by homology of the sequences in the BLASTn database was 100% and 99.55%, indicating that they correspond to Cladosporium tenuissimum and Fomitopsis meliae, respectively. Finally, the results in lipolytic activity show greater potential for Fomitopsis meliae with 0.61 U/l in residual oil. Thus, it is important to highlight the potential of this type of waste to favour the prospection of microorganisms for a sustainable alternative for future studies of biological conversion

    Fungal Screening on Olive Oil for Extracellular Triacylglycerol Lipases: Selection of a Trichoderma harzianum Strain and Genome Wide Search for the Genes

    No full text
    A lipolytic screening with fungal strains isolated from lignocellulosic waste collected in banana plantation dumps was carried out. A Trichoderma harzianum strain (B13-1) showed good extracellular lipolytic activity (205 UmL−1). Subsequently, functional screening of the lipolytic activity on Rhodamine B enriched with olive oil as the only carbon source was performed. The successful growth of the strain allows us to suggest that a true lipase is responsible for the lipolytic activity in the B13-1 strain. In order to identify the gene(s) encoding the protein responsible for the lipolytic activity, in silico identification and characterization of triacylglycerol lipases from T. harzianum is reported for the first time. A survey in the genome of this fungus retrieved 50 lipases; however, bioinformatic analyses and putative functional descriptions in different databases allowed us to choose seven lipases as candidates. Suitability of the bioinformatic screening to select the candidates was confirmed by reverse transcription polymerase chain reaction (RT-PCR). The gene codifying 526309 was expressed when the fungus grew in a medium with olive oil as carbon source. This protein shares homology with commercial lipases, making it a candidate for further applications. The success in identifying a lipase gene inducible with olive oil and the suitability of the functional screening and bioinformatic survey carried out herein, support the premise that the strategy can be used in other microorganisms with sequenced genomes to search for true lipases, or other enzymes belonging to large protein families
    corecore