545 research outputs found

    DNA Replication in Chloroplasts

    Get PDF
    Chloroplasts contain multiple copies of a DNA molecule (the plastome) that encodes many of the gene products required to perform photosynthesis. The plastome is replicated by nuclear-encoded proteins and its copy number seems to be highly regulated by the cell in a tissue-specific and developmental manner. Our understanding of the biochemical mechanism by which the plastome is replicated and the molecular basis for its regulation is limited. In this commentary we review our present understanding of chloroplast DNA replication and examine current efforts to elucidate its mechanism at a molecular level

    Purification and Characterization of a DNA Polymerase From the Cyanobacterium \u3ci\u3eAnacystis nidulans\u3c/i\u3e R2

    Get PDF
    A DNA polymerase has been highly purified from Anacystis nidulans R2. Electrophoretic analysis in sodium dodecyl sulfate-polyacrylamide gels revealed that the final fraction contains three bands of Mr 107,000, 93,000, and 51,000, respectively. Analysis of purified DNA polymerase activity in situ indicates that of the three polypeptides the Mr 107,000 species has the catalytic activities. The native molecular weight of the enzyme was estimated by glycerol gradient sedimentation to be 100,000. The enzyme has an absolute requirement for a divalent cation. Mg2+ can be replaced with Mn2+, but the DNA polymerase is less active. Potassium chloride stimulates the enzyme, while potassium phosphate has no apparent effect. The enzyme is active over a pH range from 7.5 to 9.5 in 50mM Tris-HCI buffer. The ability of the cyanobacterial DNA polymerase to use activated DNA as a template, Its associated 3′ →5′ and 5′→3′ exonuclease activities, as well as its resistance to N-ethylmaleimide, dideoxynucleotides, arabinosyl-CTP and aphidicolln suggest a similarity between this enzyme and E. coli DNA polymerase I. This is the first characterization of a DNA polymerase from a cyanobacterium

    Carboxysomal Carbonic Anhydrases: Structure and Role in Microbial CO\u3csub\u3e2\u3c/sub\u3e Fixation

    Get PDF
    Cyanobacteria and some chemoautotrophic bacteria are able to grow in environments with limiting CO2 concentrations by employing a CO2-concentrating mechanism (CCM) that allows them to accumulate inorganic carbon in their cytoplasm to concentrations several orders of magnitude higher than that on the outside. The final step of this process takes place in polyhedral protein microcompartments known as carboxysomes, which contain the majority of the CO2-fixing enzyme, RubisCO. The efficiency of CO2 fixation by the sequestered RubisCO is enhanced by co-localization with a specialized carbonic anhydrase that catalyzes dehydration of the cytoplasmic bicarbonate and ensures saturation of RubisCO with its substrate, CO2. There are two genetically distinct carboxysome types that differ in their protein composition and in the carbonic anhydrase(s) they employ. Here we review the existing information concerning the genomics, structure and enzymology of these uniquely adapted carbonic anhydrases, which are of fundamental importance in the global carbon cycle

    Purification and Characterization of a Gamma-Like DNA-Polymerase From \u3ci\u3eChenopodium album\u3c/i\u3e L.

    Get PDF
    A DNA polymerase activity from mitochondria of the dicotyledonous angiosperm Chenopodium album L. was purified almost 9000 fold by successive column chromatography steps on DEAE cellulose, heparin agarose and ssDNA cellulose. The enzyme was characterized as a gamma-class polymerase, based on its resistance to inhibitors of the nuclear DNA polymerase alpha and its preference for poly(rA).(dT)12-18 over activated DNA in vitro. The molecular weight was estimated to be 80,000 - 90,000. A 3\u27 to 5\u27 exonuclease activity was found to be tightly associated with the DNA polymerase activity through all purification steps. This is the first report of an association between a DNA polymerase and an exonuclease activity in plant mitochondria

    Accuracy of Deoxynucleotide Incorporation by Soybean Chloroplast DNA-Polymerases is Independent of the Presence of a 3\u27 to 5\u27 Exonuclease

    Get PDF
    DNA polymerase was purified from soybean (Glycine max) chloroplasts that were actively replicating DNA. The main form (form I) of the enzyme was associated with a low level of 3\u27 to 5\u27 exonuclease activity throughout purification, although the ratio of exonuclease to polymerase activity decreased with each successive purification step. A second form (form II) of DNA polymerase, which elutes from DEAE-cellulose at a higher salt concentration than form I, was devoid of any exonuclease activity. To assess the potential function of the 3\u27 to 5\u27 exonuclease in proofreading, the fidelity of deoxynucleotide incorporation was measured for form I DNA polymerase throughout purification. Despite the steadily decreasing ratio of 3\u27 to 5\u27 exonuclease to polymerase activity, the extent of misincorporation by form I enzyme remained unchanged during the final purification steps, suggesting that the exonuclease did not contribute to the accuracy of DNA synthesis by this polymerase. Fidelity of form I DNA polymerase, when compared with that of form II, revealed a higher level of misincorporation for form I enzyme, a finding that is consistent with the exonuclease playing little or no role in exonucleolytic proofreading

    Halothiobacillus neapolitanus Carboxysomes Sequester Heterologous and Chimeric RubisCO Species

    Get PDF
    Background: The carboxysome is a bacterial microcompartment that consists of a polyhedral protein shell filled with ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), the enzyme that catalyzes the first step of CO(2) fixation via the Calvin-Benson-Bassham cycle. Methodology/Principal Findings: To analyze the role of RubisCO in carboxysome biogenesis in vivo we have created a series of Halothiobacillus neapolitanus RubisCO mutants. We identified the large subunit of the enzyme as an important determinant for its sequestration into alpha-carboxysomes and found that the carboxysomes of H. neapolitanus readily incorporate chimeric and heterologous RubisCO species. Intriguingly, a mutant lacking carboxysomal RubisCO assembles empty carboxysome shells of apparently normal shape and composition. Conclusions/Significance: These results indicate that carboxysome shell architecture is not determined by the enzyme they normally sequester. Our study provides, for the first time, clear evidence that carboxysome contents can be manipulated and suggests future nanotechnological applications that are based upon engineered protein microcompartments

    CO\u3ci\u3e2\u3c/i\u3e Fixation Kinetics of \u3ci\u3eHalothiobacillus neapolitanus\u3c/i\u3e Mutant Carboxysomes Lacking Carbonic Anhydrase Suggest the Shell Acts as a Diffusional Barrier for CO\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    The widely accepted models for the role of carboxysomes in the carbon-concentrating mechanism of autotrophic bacteria predict the carboxysomal carbonic anhydrase to be a crucial component. The enzyme is thought to dehydrate abundant cytosolic bicarbonate and provide ribulose 1.5-bisphosphate carboxylase/oxygenase (RubisCO) sequestered within the carboxysome with sufficiently high concentrations of its substrate, CO2, to permit its efficient fixation onto ribulose 1,5-bisphosphate. In this study, structure and function of carboxysomes purified from wild type Halothiobacillus neapolitanus and from a high CO2-requiring mutant that is devoid of carboxysomal carbonic anhydrase were compared. The kinetic constants for the carbon fixation reaction confirmed the importance of a functional carboxysomal carbonic anhydrase for efficient catalysis by RubisCO. Furthermore, comparisons of the reaction in intact and broken microcompartments and by purified carboxysomal RubisCO implicated the protein shell of the microcompartment as impeding diffusion of CO2 into and out of the carboxysome interior

    Chloroplast and Mitochondrial DNA Polymerases from Cultured Soybean Cells

    Full text link
    • …
    corecore