13 research outputs found

    Protecting sensitive patient groups from imaging using ionizing radiation: effects during pregnancy, in fetal life and childhood

    Get PDF
    The frequency of imaging examinations requiring radiation exposure in children (especially CT) is rapidly increasing. This paper reviews the current evidence in radiation protection in pediatric imaging, focusing on the recent knowledge of the biological risk related to low doses exposure. Even if there are no strictly defined limits for patient radiation exposure, it is recommended to try to keep doses as low as reasonably achievable (the ALARA principle). To achieve ALARA, several techniques to reduce the radiation dose in radiation-sensitive patients groups are reviewed. The most recent recommendations that provide guidance regarding imaging of pregnant women are also summarized, and the risk depending on dose and phase of pregnancy is reported. Finally, the risk-benefit analysis of each examination, and careful communication of this risk to the patient, is emphasized

    Blood cell gene expression profiles: A narrative review of biomarkers and effects of low-dose ionizing radiation exposure

    Get PDF
    Ionizing radiation (IR) is a ubiquitous environmental agent whose effects on organisms are well known. This review provides a summary about definitions and man-made low-dose ionizing radiation (LDIR) sources and dosimeters used in radiation protection. Moreover, the main purpose of this article was to overview the pro-oncogenic effects of LDIR, and to provide experimental evidence that reinforce the use of gene expression data as biomarkers of LDIR effects. Our review showed that basic studies on biological response to LDIR are considered priority. Further, understanding occupational exposure to LDIR may provide valuable information to organize the prevention and prevent from the onset of long-term health effects in radiation workers. Currently, the biodosimetry-based assessment in certain high risk occupational groups may be performed by using peripheral blood cells as samples for testing and validation of biomarkers specificity and sensitivity. Most of the studies on this topic are aimed at establishing new biomarkers and approaches to biological dosimetry, for allowing non-invasive monitoring of long-term health effects of LDIR. Analysis on changes in gene-expression, which is an early specific biological response to LDIR, could provide rapid estimates of individual dose in occupational cohorts, improving the management of periodical medical examination in subjects exposed to LDIR sources

    Dose-Related Analysis in Percutaneous Central Venous Catheters Insertion: Experience of a Pediatric Interventional Radiology Center

    No full text
    Background: There are many techniques for long-term central venous catheter (CVC) placement, but none of them are specific for pediatric patients or focused on the delivered dose of ionizing radiation. Materials and Methods: This retrospective study examined a sample of pediatric patients who received percutaneous long-term CVC positioning in a tertiary care pediatric hospital. Effective dose, dose-area product (DAP) and length of time of exposition during the procedure were determined, using an appropriate technical procedure, exam and program set of the angiograph, and compared with an unpaired t-test analysis. Results: The study included 1410 enrolled patients, with a median age of 10 years (range 0.2–18 years), between 2016 and 2019. In 2016 (318 pts), the mean effective dose was 0.13 mSv and the mean DAP dose was 18.95 µGy/m2 In 2017 (353 pts), the mean effective dose was 0.11 mSv and the mean DAP dose was 17.26 µGy/m2. In 2018 (351 pts), the mean effective dose was 0.05 mSv and the mean DAP dose was 7.23 µGy/m2. In 2019 (388 pts), the mean effective dose was 0.02 mSv and the mean DAP dose was 3.10 µGy/m2. Conclusions: Medical and technical expertise led to a remarkable reduction in the radiation dose. Therefore, the authors’ hypothesis is that US- and fluoroscopy-guided percutaneous long-term CVC insertion technique is safer, more cost-effective and lower in terms of radiation exposure if correctly applied, compared to surgical or percutaneous by direct puncture techniques

    Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study

    No full text
    Abstract Background The potential of robot-mediated therapy and virtual reality in neurorehabilitation is becoming of increasing importance. However, there is limited information, using neuroimaging, on the neural networks involved in training with these technologies. This study was intended to detect the brain network involved in the visual processing of movement during robotic training. The main aim was to investigate the existence of a common cerebral network able to assimilate biological (human upper limb) and non-biological (abstract object) movements, hence testing the suitability of the visual non-biological feedback provided by the InMotion2 Robot. Methods A visual functional Magnetic Resonance Imaging (fMRI) task was administered to 22 healthy subjects. The task required observation and retrieval of motor gestures and of the visual feedback used in robotic training. Functional activations of both biological and non-biological movements were examined to identify areas activated in both conditions, along with differential activity in upper limb vs. abstract object trials. Control of response was also tested by administering trials with congruent and incongruent reaching movements. Results The observation of upper limb and abstract object movements elicited similar patterns of activations according to a caudo-rostral pathway for the visual processing of movements (including specific areas of the occipital, temporal, parietal, and frontal lobes). Similarly, overlapping activations were found for the subsequent retrieval of the observed movement. Furthermore, activations of frontal cortical areas were associated with congruent trials more than with the incongruent ones. Conclusions This study identified the neural pathway associated with visual processing of movement stimuli used in upper limb robot-mediated training and investigated the brain’s ability to assimilate abstract object movements with human motor gestures. In both conditions, activations were elicited in cerebral areas involved in visual perception, sensory integration, recognition of movement, re-mapping on the somatosensory and motor cortex, storage in memory, and response control. Results from the congruent vs. incongruent trials revealed greater activity for the former condition than the latter in a network including cingulate cortex, right inferior and middle frontal gyrus that are involved in the go-signal and in decision control. Results on healthy subjects would suggest the appropriateness of an abstract visual feedback provided during motor training. The task contributes to highlight the potential of fMRI in improving the understanding of visual motor processes and may also be useful in detecting brain reorganisation during training.</p

    Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study.

    Get PDF
    Abstract Background The potential of robot-mediated therapy and virtual reality in neurorehabilitation is becoming of increasing importance. However, there is limited information, using neuroimaging, on the neural networks involved in training with these technologies. This study was intended to detect the brain network involved in the visual processing of movement during robotic training. The main aim was to investigate the existence of a common cerebral network able to assimilate biological (human upper limb) and non-biological (abstract object) movements, hence testing the suitability of the visual non-biological feedback provided by the InMotion2 Robot. Methods A visual functional Magnetic Resonance Imaging (fMRI) task was administered to 22 healthy subjects. The task required observation and retrieval of motor gestures and of the visual feedback used in robotic training. Functional activations of both biological and non-biological movements were examined to identify areas activated in both conditions, along with differential activity in upper limb vs. abstract object trials. Control of response was also tested by administering trials with congruent and incongruent reaching movements. Results The observation of upper limb and abstract object movements elicited similar patterns of activations according to a caudo-rostral pathway for the visual processing of movements (including specific areas of the occipital, temporal, parietal, and frontal lobes). Similarly, overlapping activations were found for the subsequent retrieval of the observed movement. Furthermore, activations of frontal cortical areas were associated with congruent trials more than with the incongruent ones. Conclusions This study identified the neural pathway associated with visual processing of movement stimuli used in upper limb robot-mediated training and investigated the brain's ability to assimilate abstract object movements with human motor gestures. In both conditions, activations were elicited in cerebral areas involved in visual perception, sensory integration, recognition of movement, re-mapping on the somatosensory and motor cortex, storage in memory, and response control. Results from the congruent vs. incongruent trials revealed greater activity for the former condition than the latter in a network including cingulate cortex, right inferior and middle frontal gyrus that are involved in the go-signal and in decision control. Results on healthy subjects would suggest the appropriateness of an abstract visual feedback provided during motor training. The task contributes to highlight the potential of fMRI in improving the understanding of visual motor processes and may also be useful in detecting brain reorganisation during training

    Quantification of scatter radiation from radiographic procedures in a neonatal intensive care unit

    No full text
    Background In a neonatal intensive care unit (NICU), preterm infants are often exposed to a large number of radiographic examinations, which could cause adjacent neonates, family caregivers and staff members to be exposed to a dose amount due to scatter radiation. Objective To provide information on scatter radiation exposure levels in a NICU, to compare these values with the effective dose limits established by the European Union and to evaluate the effectiveness of radiation protection devices in this setting. Materials and methods Radiation exposure levels due to scatter radiation were estimated by passive detectors (thermoluminescent dosimeters) and direct dosimetric measurements (with a dose rate meter); in the latter case, an angular map of the scatter dose distribution was achieved. Results The dose due to scatter radiation to staff in our setting is approximately 160 ÎĽSv/year, which is markedly lower than the effective dose limit for workers established by the European Union (20 mSv/year). The doses range between 0.012 and 0.095 ÎĽSv/radiograph. Considering a mean hospitalization period of 3 months and our NICU workload, the corresponding scatter radiation dose to an adjacent patient and/or his/her caregiver is at most 40 ÎĽSv. Conclusion For distances greater than 1 m from the irradiation field, both scatter dose absorbed by a staff member during a year and that by an adjacent patient and/or his/her caregiver during hospitalization is less than 1 mSv, which is the exposure limit for public members in a year
    corecore