456 research outputs found

    Magnetoelastic coupling and charge correlation lengths in a twin domain of Ba(Fe1x_{1-x}Cox_{x})2_{2}As2_{2} (x=0.047x=0.047): A high-resolution X-ray diffraction study

    Get PDF
    The interplay between structure, magnetism and superconductivity in single crystal Ba(Fe1x_{1-x}Cox_{x})2_{2}As2_{2} (x=0.047) has been studied using high-resolution X-ray diffraction by monitoring charge Bragg reflections in each twin domain separately. The emergence of the superconducting state is correlated with the suppression of the orthorhombic distortion around \emph{T}C_\texttt{C}, exhibiting competition between orthorhombicity and superconductivity. Above \emph{T}S_\texttt{S}, the in-plane charge correlation length increases with the decrease of temperature, possibly induced by nematic fluctuations in the paramagnetic tetragonal phase. Upon cooling, anomalies in the in-plane charge correlation lengths along aa (ξa\xi_{a}) and bb axes (ξb\xi_{b}) are observed at \emph{T}S_\texttt{S} and also at \emph{T}N_\texttt{N} indicative of strong magnetoelastic coupling. The in-plane charge correlation lengths are found to exhibit anisotropic behavior along and perpendicular to the in-plane component of stripe-type AFM wave vector (101)O_{\rm O} below around \emph{T}N_\texttt{N}. The temperature dependence of the out-of-plane charge correlation length shows a single anomaly at \emph{T}N_\texttt{N}, reflecting the connection between Fe-As distance and Fe local moment. The origin of the anisotropic in-plane charge correlation lengths ξa\xi_{a} and ξb\xi_{b} is discussed on the basis of the antiphase magnetic domains and their dynamic fluctuations.Comment: 7 pages, 6 figures, 34 references, submitted for publication in Physical Review

    Asymptotic enumeration of correlation-immune boolean functions

    Get PDF
    A boolean function of nn boolean variables is {correlation-immune} of order kk if the function value is uncorrelated with the values of any kk of the arguments. Such functions are of considerable interest due to their cryptographic properties, and are also related to the orthogonal arrays of statistics and the balanced hypercube colourings of combinatorics. The {weight} of a boolean function is the number of argument values that produce a function value of 1. If this is exactly half the argument values, that is, 2n12^{n-1} values, a correlation-immune function is called {resilient}. An asymptotic estimate of the number N(n,k)N(n,k) of nn-variable correlation-immune boolean functions of order kk was obtained in 1992 by Denisov for constant kk. Denisov repudiated that estimate in 2000, but we will show that the repudiation was a mistake. The main contribution of this paper is an asymptotic estimate of N(n,k)N(n,k) which holds if kk increases with nn within generous limits and specialises to functions with a given weight, including the resilient functions. In the case of k=1k=1, our estimates are valid for all weights.Comment: 18 page

    Character of the structural and magnetic phase transitions in the parent and electron doped BaFe2As2 compounds

    Get PDF
    We present a combined high-resolution x-ray diffraction and x-ray resonant magnetic scattering (XRMS) study of as-grown BaFe2As2. The structural/magnetic transitions must be described as a two-step process. At T_S = 134.5 K we observe the onset of a second-order structural transition from the high-temperature paramagnetic tetragonal structure to a paramagnetic orthorhombic phase, followed by a discontinuous step in the structural order parameter that is coincident with a first-order antiferromagnetic (AFM) transition at T_N = 133.75 K. These data, together with detailed high-resolution x-ray studies of the structural transition in lightly doped Ba(Fe{1-x}Co{x})2As2 and Ba(Fe{1-x}Rh{x})2As2 compounds, show that the structural and AFM transitions do, in fact, occur at slightly different temperatures in the parent BaFe2As2 compound, and evolve towards split secondorder transitions as the doping concentration is increased. We estimate the composition for the tricritical point for Co-doping and employ a mean-field approach to show that our measurements can be explained by the inclusion of an anharmonic term in the elastic free energy and magneto-elastic coupling in the form of an emergent Ising-nematic degree of freedom.Comment: 10 pages, 11 figures; accepted for publication in Phys. Rev.

    Magnetic excitations in underdoped Ba(Fe1-xCox)2As2 with x=0.047

    Get PDF
    The magnetic excitations in the paramagnetic-tetragonal phase of underdoped Ba(Fe0.953Co0.047)2As2, as measured by inelastic neutron scattering, can be well described by a phenomenological model with purely diffusive spin dynamics. At low energies, the spectrum around the magnetic ordering vector Q_AFM consists of a single peak with elliptical shape in momentum space. At high energies, this inelastic peak is split into two peaks across the direction perpendicular to Q_AFM. We use our fittings to argue that such a splitting is not due to incommensurability or propagating spin-wave excitations, but is rather a consequence of the anisotropies in the Landau damping and in the magnetic correlation length, both of which are allowed by the tetragonal symmetry of the system. We also measure the magnetic spectrum deep inside the magnetically-ordered phase, and find that it is remarkably similar to the spectrum of the paramagnetic phase, revealing the strongly overdamped character of the magnetic excitations.Comment: 12 pages, 7 figure

    Commensurate antiferromagnetic ordering in Ba(Fe{1-x}Co{x})2As2 determined by x-ray resonant magnetic scattering at the Fe K-edge

    Get PDF
    We describe x-ray resonant magnetic diffraction measurements at the Fe K-edge of both the parent BaFe2As2 and superconducting Ba(Fe0.953Co0.047)2As2 compounds. From these high-resolution measurements we conclude that the magnetic structure is commensurate for both compositions. The energy spectrum of the resonant scattering is in reasonable agreement with theoretical calculations using the full-potential linear augmented plane wave method with a local density functional.Comment: 5 pages, 3 figures; accepted for publication in Phys. Rev. B Rapid Com

    Antiferromagnetic order in CaK(Fe[1-x]Ni[x])4As4 and its interplay with superconductivity

    Get PDF
    The magnetic order in CaK(Fe[1-x]Ni[x])4As4 (1144) single crystals (x = 0.051 and 0.033) has been studied by neutron diffraction. We observe magnetic Bragg peaks associated to the same propagation vectors as found for the collinear stripe antiferromagnetic (AFM) order in the related BaFe2As2 (122) compound. The AFM state in 1144 preserves tetragonal symmetry and only a commensurate, non-collinear structure with a hedgehog spin-vortex crystal (SVC) arrangement in the Fe plane and simple AFM stacking along the c direction is consistent with our observations. The SVC order is promoted by the reduced symmetry in the FeAs layer in the 1144 structure. The long-range SVC order coexists with superconductivity, however, similar to the doped 122 compounds, the ordered magnetic moment is gradually suppressed with the developing superconducting order parameter. This supports the notion that both collinear and non-collinear magnetism and superconductivity are competing for the same electrons coupled by Fermi surface nesting in iron arsenide superconductors.Comment: (5 pages, 5 figures
    corecore