78 research outputs found

    Preparation and uses of chlorinated glycerol derivatives

    Get PDF
    Crude glycerol (C3H8O3) is a major by-product of biodiesel production from vegetable oils and animal fats. The increased biodiesel production in the last two decades has forced glycerol production up and prices down. However, crude glycerol from biodiesel production is not of adequate purity for industrial uses, including food, cosmetics and pharmaceuticals. The purification process of crude glycerol to reach the quality standards required by industry is expensive and dificult. Novel uses for crude glycerol can reduce the price of biodiesel and make it an economical alternative to diesel. Moreover, novel uses may improve environmental impact, since crude glycerol disposal is expensive and dificult. Glycerol is a versatile molecule with many potential applications in fermentation processes and synthetic chemistry. It serves as a glucose substitute in microbial growth media and as a precursor in the synthesis of a number of commercial intermediates or fine chemicals. Chlorinated derivatives of glycerol are an important class of such chemicals. The main focus of this review is the conversion of glycerol to chlorinated derivatives, such as epichlorohydrin and chlorohydrins, and their further use in the synthesis of additional downstream products. Downstream products include non-cyclic compounds with allyl, nitrile, azide and other functional groups, as well as oxazolidinones and triazoles, which are cyclic compounds derived from ephichlorohydrin and chlorohydrins. The polymers and ionic liquids, which use glycerol as an initial building block, are highlighted, as well.This work was partially funded by the Ministerio de Ciencia, Innovación y Universidades de España (grants: MINECO/FEDER CTQ2015-70982-C3-1-R) and by the Generalitat de Catalunya, Grant 2017 SGR 828, to the Agricultural Biotechnology and Bioeconomy Unit (ABBU)

    Effect of four novel bio-based DES (Deep Eutectic Solvents) on hardwood fractionation

    Get PDF
    Using the basic principle of construction between a hydrogen bond acceptor (HBA) and a hydrogen bond donor (HBD), four bio-based deep eutectic solvents (DESs) were prepared in a 1:2 molar ratio of HBA:HBD. 2,3-Dihydroxypropyl-1-triethylammonium chloride ([C9H22N+O2]Cl婨 ) was synthesized from raw glycerol and used as an HBA. Lactic acid, urea, pure glycerol, and ethylene glycol were selected as HBD. Attempts to prepare DESs, using citric acid and benzoic acid as HBDs, were unsuccessful. All these DESs were characterized using FTIR and NMR techniques. Besides, physicochemical parameters such as pH, viscosity, density, and melting point were determined. The behavior of these DES to fractionate olive pomace was studied. Lignin recovery yields spanned between 27% and 39% (w/w) of the available lignin in olive pomace. The best DES, in terms of lignin yield ([C9H22N+O2]Cl婨 -lactic acid), was selected to perform a scale-up lignin extraction using 40 g of olive pomace. Lignin recovery on the multigram scale was similar to the mg scale (38% w/w). Similarly, for the holocellulose-rich fractions, recovery yields were 34% and 45% for mg and multi-gram scale, respectively. Finally, this DES was used to fractionate four fruit pruning samples. These results show that our novel DESs are alternative approaches to the ionic liquid:triethylammonium hydrogen sulfate and the widely used DES: choline chloride:lactic acid (1:10 molar ratio) for biomass processingThis work has been partially funded by the Spanish government (CTQ2015-70982-C3-1-R (MINECO/FEDER)

    Biocatalytic Transformation of 5-Hydroxymethylfurfural into 2,5-di(hydroxymethyl)furan by a Newly Isolated Fusarium striatum Strain

    Get PDF
    The compound 2,5-di(hydroxymethyl)furan (DHMF) is a high-value chemical block that can be synthesized from 5-hydroxymethylfurfural (HMF), a platform chemical that results from the dehydration of biomass-derived carbohydrates. In this work, the HMF biotransformation capability of different Fusarium species was evaluated, and F. striatum was selected to produce DHMF. The effects of the inoculum size, glucose concentration and pH of the media over DHMF production were evaluated by a 23 factorial design. A substrate feeding approach was found suitable to overcome the toxicity effect of HMF towards the cells when added at high concentrations (>75 mM). The process was successfully scaled-up at bioreactor scale (1.3 L working volume) with excellent DHMF production yields (95%) and selectivity (98%). DHMF was purified from the reaction media with high recovery and purity by organic solvent extraction with ethyl acetate.This work was partially supported by the Spanish government (PID2019-110735RB-C21, MICIN/FEDER) and the Catalan Government (FI_B1_00135)
    corecore