49 research outputs found

    Dynamic strategic interactions : analysis and mechanism design

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 225-232).Modern systems, such as engineering systems with autonomous entities, markets, and financial networks, consist of self-interested agents with potentially conflicting objectives. These agents interact in a dynamic manner, modifying their strategies over time to improve their payoffs. The presence of self-interested agents in such systems, necessitates the analysis of the impact of multi-agent decision making on the overall system, and the design of new systems with improved performance guarantees. Motivated by this observation, in the first part of this thesis we focus on fundamental structural properties of games, and exploit them to provide a new framework for analyzing the limiting behavior of strategy update rules in various game-theoretic settings. In the second part, we investigate the design problem of an auctioneer who uses iterative multi-- item auctions for efficient allocation of resources. More specifically, in the first part of the thesis we focus on potential games, a special class of games with desirable equilibrium and dynamic properties, and analyze their preference structure. Exploiting this structure we obtain a decomposition of arbitrary games into three components, which we refer to as the potential, harmonic, and nonstrategic components. Intuitively, the potential component of a game captures interactions that can equivalently be represented as a common interest game, while the harmonic part represents conflicts between the interests of the players. We make this intuition precise by studying the properties of these two components, and establish that indeed they have quite distinct and remarkable characteristics. The decomposition also allows us to approximate a given game with a potential game. We show that the set of approximate equilibria of an arbitrary game can be characterized through the equilibria of a potential game that approximates it. The decomposition provides a valuable tool for the analysis of dynamics in games. Earlier literature established that many natural strategy update rules converge to a Nash equilibrium in potential games. We show that games that are close to a potential game exhibit similar properties. In particular, we focus on three commonly studied discrete-time update rules (better/best response, logit response, and discrete-time fictitious play dynamics), and establish that in near-potential games, the limiting behavior of these update rules can be characterized by an approximate equilibrium set, size of which is proportional to the distance of the original game from a potential game. Since a close potential game to a given game can be systematically found via decomposition, our results suggest a systematic framework for studying the limiting behavior of adaptive dynamics in arbitrary finite strategic form games: the limiting behavior of dynamics in a given game can be characterized by first approximating this game with a potential game, and then analyzing the limiting behavior of dynamics in the potential game. In the second part of the thesis, we change our focus to implementing efficient outcomes in multi-agent settings by using simple mechanisms. In particular, we develop novel efficient iterative auction formats for multi-item environments, where items exhibit value complementarities/substitutabilities. We obtain our results by focusing on a special class of value functions, which we refer to as graphical valuations. These valuations are not fully general, but importantly they capture value complementarity/substitutability in important practical settings, while allowing for a compact representation of the value functions. We start our analysis by first analyzing how the special structure of graphical valuations can be exploited to design simple iterative auction formats. We show that in settings where the underlying value graph is a tree (and satisfies an additional technical condition), a Walrasian equilibrium always exists (even in the presence of value complementarities). Using this result we provide a linear programming formulation of the efficient allocation problem for this class of valuations. Additionally, we demonstrate that a Walrasian equilibrium may not exist, when the underlying value graph is more general. However, we also establish that in this case a more general pricing equilibrium always exists, and provide a stronger linear programming formulation that can be used to identify the efficient allocation for general graphical valuations. We then consider solutions of these linear programming formulations using iterative algorithms. Complementing these iterative algorithms with appropriate payment rules, we obtain iterative auction formats that implement the efficient outcome at an (ex-post perfect) equilibrium. The auction formats we obtain rely on simple pricing rules that, in the most general case, require offering a bidder-specific price for each item, and bidder-specific discounts/markups for pairs of items. Our results in this part of the thesis suggest that when value functions of bidders exhibit some special structure, it is possible to systematically exploit this structure in order to develop simple efficient iterative auction formats.by Utku Ozan Candogan.Ph.D

    Potential games and competitive scheduling in wireless networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 121-125).This thesis studies a game theoretic model for scheduling transmissions among multiple self-interested users in a wireless network with fading. Our model involves a finite number of mobile users transmitting to a common base station under time-varying channel conditions. A distinguishing feature of our model is the assumption that the channel quality of each user is affected by global and time-varying conditions at the base station, resulting in each user observing a common channel state. Each user chooses a transmission policy that maximizes its utility function, which captures a natural trade-off between throughput and power. The transmission policy specifies how transmissions should be scheduled as a function of the time-varying common channel state observed by each user. We make three main contributions. First, we establish the existence of a Nash equilibrium of this game and characterize the set of equilibria. We investigate the efficiency properties of these equilibria, and study a related aggregate utility maximization problem, to serve as a benchmark for the performance of the equilibria. We quantify the efficiency loss in the game comparing the optimal solution of the aggregate utility maximization problem, to the best and worst equilibria in terms of the aggregate utility. We show that the performance of the worst equilibrium can be arbitrarily bad (in terms of the aggregate utility), but the efficiency loss of the best equilibrium can be bounded as a function of a technology-related parameter. Our second contribution is to study various distributed mechanisms to reach an equilibrium of this game.(cont.) We use the theory of potential games to establish convergence of such mechanisms to an equilibrium. To this end, we study conditions under which the scheduling game is a potential game. This necessitates extending the known necessary conditions for the existence of ordinal potential in games. In this thesis, we show that the scheduling game has a twice continuously differentiable ordinal potential if and only if a rate alignment condition holds. In our third contribution, we investigate the related question of characterizing the "distance" of an arbitrary game to an exact potential game. We provide a new framework based on combinatorial Hodge theory for projecting an arbitrary game to the set of exact potential games. We prove that the equilibria of a game are equilibria of its projection, where E is bounded by the projection error. Moreover, we show that the projection of a game to the set of exact potential games can be calculated using distributed consensus algorithms.by Utku Ozan Candogan.S.M

    Dynamics in Near-Potential Games

    Full text link
    Except for special classes of games, there is no systematic framework for analyzing the dynamical properties of multi-agent strategic interactions. Potential games are one such special but restrictive class of games that allow for tractable dynamic analysis. Intuitively, games that are "close" to a potential game should share similar properties. In this paper, we formalize and develop this idea by quantifying to what extent the dynamic features of potential games extend to "near-potential" games. We study convergence of three commonly studied classes of adaptive dynamics: discrete-time better/best response, logit response, and discrete-time fictitious play dynamics. For better/best response dynamics, we focus on the evolution of the sequence of pure strategy profiles and show that this sequence converges to a (pure) approximate equilibrium set, whose size is a function of the "distance" from a close potential game. We then study logit response dynamics and provide a characterization of the stationary distribution of this update rule in terms of the distance of the game from a close potential game and the corresponding potential function. We further show that the stochastically stable strategy profiles are pure approximate equilibria. Finally, we turn attention to fictitious play, and establish that the sequence of empirical frequencies of player actions converges to a neighborhood of (mixed) equilibria of the game, where the size of the neighborhood increases with distance of the game to a potential game. Thus, our results suggest that games that are close to a potential game inherit the dynamical properties of potential games. Since a close potential game to a given game can be found by solving a convex optimization problem, our approach also provides a systematic framework for studying convergence behavior of adaptive learning dynamics in arbitrary finite strategic form games.Comment: 42 pages, 8 figure

    Zero-Sum Polymatrix Games: A Generalization of Minmax

    Get PDF
    We show that in zero-sum polymatrix games, a multiplayer generalization of two-person zero-sum games, Nash equilibria can be found efficiently with linear programming. We also show that the set of coarse correlated equilibria collapses to the set of Nash equilibria. In contrast, other important properties of two-person zero-sum games are not preserved: Nash equilibrium payoffs need not be unique, and Nash equilibrium strategies need not be exchangeable or max-min.National Science Foundation (U.S.) (CCF-0953960)National Science Foundation (U.S.) (CCF-1101491

    Optimal Pricing in Networks with Externalities

    Get PDF
    We study the optimal pricing strategies of a monopolist selling a divisible good (service) to consumers who are embedded in a social network. A key feature of our model is that consumers experience a (positive) local network effect. In particular, each consumer's usage level depends directly on the usage of her neighbors in the social network structure. Thus, the monopolist's optimal pricing strategy may involve offering discounts to certain agents who have a central position in the underlying network. Our results can be summarized as follows. First, we consider a setting where the monopolist can offer individualized prices and derive a characterization of the optimal price for each consumer as a function of her network position. In particular, we show that it is optimal for the monopolist to charge each agent a price that consists of three components: (i) a nominal term that is independent of the network structure, (ii) a discount term proportional to the influence that this agent exerts over the rest of the social network (quantified by the agent's Bonacich centrality), and (iii) a markup term proportional to the influence that the network exerts on the agent. In the second part of the paper, we discuss the optimal strategy of a monopolist who can only choose a single uniform price for the good and derive an algorithm polynomial in the number of agents to compute such a price. Third, we assume that the monopolist can offer the good in two prices, full and discounted, and we study the problem of determining which set of consumers should be given the discount. We show that the problem is NP-hard; however, we provide an explicit characterization of the set of agents who should be offered the discounted price. Next, we describe an approximation algorithm for finding the optimal set of agents. We show that if the profit is nonnegative under any feasible price allocation, the algorithm guarantees at least 88% of the optimal profit. Finally, we highlight the value of network information by comparing the profits of a monopolist who does not take into account the network effects when choosing her pricing policy to those of a monopolist who uses this information optimally

    Dynamics in near-potential games

    Get PDF
    We consider discrete-time learning dynamics in finite strategic form games, and show that games that are close to a potential game inherit many of the dynamical properties of potential games. We first study the evolution of the sequence of pure strategy profiles under better/best response dynamics. We show that this sequence converges to a (pure) approximate equilibrium set whose size is a function of the “distance” to a given nearby potential game. We then focus on logit response dynamics, and provide a characterization of the limiting outcome in terms of the distance of the game to a given potential game and the corresponding potential function. Finally, we turn attention to fictitious play, and establish that in near-potential games the sequence of empirical frequencies of player actions converges to a neighborhood of (mixed) equilibria, where the size of the neighborhood increases according to the distance to the set of potential games

    Near-Optimal Power Control in Wireless Networks: A Potential Game Approach

    Get PDF
    We study power control in a multi-cell CDMA wireless system whereby self-interested users share a common spectrum and interfere with each other. Our objective is to design a power control scheme that achieves a (near) optimal power allocation with respect to any predetermined network objective (such as the maximization of sum-rate, or some fairness criterion). To obtain this, we introduce the potential-game approach that relies on approximating the underlying noncooperative game with a "close" potential game, for which prices that induce an optimal power allocation can be derived. We use the proximity of the original game with the approximate game to establish through Lyapunov-based analysis that natural user-update schemes (applied to the original game) converge within a neighborhood of the desired operating point, thereby inducing near-optimal performance in a dynamical sense. Additionally, we demonstrate through simulations that the actual performance can in practice be very close to optimal, even when the approximation is inaccurate. As a concrete example, we focus on the sum-rate objective, and evaluate our approach both theoretically and empirically.National Science Foundation (U.S.) (DMI-05459100)National Science Foundation (U.S.) (DMI-0545910)United States. Defense Advanced Research Projects Agency (ITMANET program)7th European Community Framework Programme (Marie Curie International Fellowship

    Flows and Decompositions of Games: Harmonic and Potential Games

    Get PDF
    In this paper we introduce a novel flow representation for finite games in strategic form. This representation allows us to develop a canonical direct sum decomposition of an arbitrary game into three components, which we refer to as the potential, harmonic and nonstrategic components. We analyze natural classes of games that are induced by this decomposition, and in particular, focus on games with no harmonic component and games with no potential component. We show that the first class corresponds to the well-known potential games. We refer to the second class of games as harmonic games, and study the structural and equilibrium properties of this new class of games. Intuitively, the potential component of a game captures interactions that can equivalently be represented as a common interest game, while the harmonic part represents the conflicts between the interests of the players. We make this intuition precise, by studying the properties of these two classes, and show that indeed they have quite distinct and remarkable characteristics. For instance, while finite potential games always have pure Nash equilibria, harmonic games generically never do. Moreover, we show that the nonstrategic component does not affect the equilibria of a game, but plays a fundamental role in their efficiency properties, thus decoupling the location of equilibria and their payoff-related properties. Exploiting the properties of the decomposition framework, we obtain explicit expressions for the projections of games onto the subspaces of potential and harmonic games. This enables an extension of the properties of potential and harmonic games to "nearby" games. We exemplify this point by showing that the set of approximate equilibria of an arbitrary game can be characterized through the equilibria of its projection onto the set of potential games
    corecore