3 research outputs found

    Optimal Design of an Artificial Intelligence Controller for Solar-Battery Integrated UPQC in Three Phase Distribution Networks

    No full text
    In order to minimize losses in the distribution network, integrating non-conventional energy sources such as wind, tidal, solar, and so on, into the grid has been proposed in many papers as a viable solution. Using electronic power equipment to control nonlinear loads impacts the quality of power. The unified power quality conditioner (UPQC) is a FACTS device with back-to-back converters that are coupled together with a DC-link capacitor. Conventional training algorithms used by ANNs, such as the Back Propagation and Levenberg–Marquardt algorithms, can become trapped in local optima, which motivates the use of ANNs trained by evolutionary algorithms. This work presents a hybrid controller, based on the soccer league algorithm, and trained by an artificial neural network controller (S-ANNC), for use in the shunt active power filter. This work also presents a fuzzy logic controller for use in the series active power filter of the UPQC that is associated with the solar photovoltaic system and battery storage system. The synchronization of phases is created using a self-tuning filter (STF), in association with the unit vector generation method (UVGM), for the superior performance of UPQC during unbalanced/distorted supply voltage conditions; therefore, the necessity of the phase-locked-loop, low-pass filters, and high-pass filters are totally eliminated. The STF is used for separating harmonic and fundamental components, in addition to generating the synchronization phases of series and shunt filters. The prime objective of the suggested S-ANNC is to minimize mean square error in order to achieve a fast action that will retain the DC-link voltage’s constant value during load/irradiation variations, suppress current harmonics and power–factor enhancement, mitigate sagging/swelling/disturbances in the supply voltage, and provide appropriate compensation for unbalanced supply voltages. The performance analysis of S-ANNC, using five test cases for several combinations of loads/supply voltages, demonstrates the supremacy of the suggested S-ANNC. Comparative analysis was carried out using the GA, PSO, and GWO training methods, in addition to other methods that exist in the literature. The S-ANNC showed an extra-ordinary performance in terms of diminishing total harmonic distortion (THD); thus PF was improved and voltage distortions were reduced

    Optimal Design of an Artificial Intelligence Controller for Solar-Battery Integrated UPQC in Three Phase Distribution Networks

    No full text
    In order to minimize losses in the distribution network, integrating non-conventional energy sources such as wind, tidal, solar, and so on, into the grid has been proposed in many papers as a viable solution. Using electronic power equipment to control nonlinear loads impacts the quality of power. The unified power quality conditioner (UPQC) is a FACTS device with back-to-back converters that are coupled together with a DC-link capacitor. Conventional training algorithms used by ANNs, such as the Back Propagation and Levenberg–Marquardt algorithms, can become trapped in local optima, which motivates the use of ANNs trained by evolutionary algorithms. This work presents a hybrid controller, based on the soccer league algorithm, and trained by an artificial neural network controller (S-ANNC), for use in the shunt active power filter. This work also presents a fuzzy logic controller for use in the series active power filter of the UPQC that is associated with the solar photovoltaic system and battery storage system. The synchronization of phases is created using a self-tuning filter (STF), in association with the unit vector generation method (UVGM), for the superior performance of UPQC during unbalanced/distorted supply voltage conditions; therefore, the necessity of the phase-locked-loop, low-pass filters, and high-pass filters are totally eliminated. The STF is used for separating harmonic and fundamental components, in addition to generating the synchronization phases of series and shunt filters. The prime objective of the suggested S-ANNC is to minimize mean square error in order to achieve a fast action that will retain the DC-link voltage’s constant value during load/irradiation variations, suppress current harmonics and power–factor enhancement, mitigate sagging/swelling/disturbances in the supply voltage, and provide appropriate compensation for unbalanced supply voltages. The performance analysis of S-ANNC, using five test cases for several combinations of loads/supply voltages, demonstrates the supremacy of the suggested S-ANNC. Comparative analysis was carried out using the GA, PSO, and GWO training methods, in addition to other methods that exist in the literature. The S-ANNC showed an extra-ordinary performance in terms of diminishing total harmonic distortion (THD); thus PF was improved and voltage distortions were reduced

    Using Recurrent Neural Networks for Predicting Type-2 Diabetes from Genomic and Tabular Data

    No full text
    The development of genomic technology for smart diagnosis and therapies for various diseases has lately been the most demanding area for computer-aided diagnostic and treatment research. Exponential breakthroughs in artificial intelligence and machine intelligence technologies could pave the way for identifying challenges afflicting the healthcare industry. Genomics is paving the way for predicting future illnesses, including cancer, Alzheimer’s disease, and diabetes. Machine learning advancements have expedited the pace of biomedical informatics research and inspired new branches of computational biology. Furthermore, knowing gene relationships has resulted in developing more accurate models that can effectively detect patterns in vast volumes of data, making classification models important in various domains. Recurrent Neural Network models have a memory that allows them to quickly remember knowledge from previous cycles and process genetic data. The present work focuses on type 2 diabetes prediction using gene sequences derived from genomic DNA fragments through automated feature selection and feature extraction procedures for matching gene patterns with training data. The suggested model was tested using tabular data to predict type 2 diabetes based on several parameters. The performance of neural networks incorporating Recurrent Neural Network (RNN) components, Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU) was tested in this research. The model’s efficiency is assessed using the evaluation metrics such as Sensitivity, Specificity, Accuracy, F1-Score, and Mathews Correlation Coefficient (MCC). The suggested technique predicted future illnesses with fair Accuracy. Furthermore, our research showed that the suggested model could be used in real-world scenarios and that input risk variables from an end-user Android application could be kept and evaluated on a secure remote server
    corecore