700 research outputs found
A Tactile Sensor Device Exploiting the Tunable Sensitivity of Copper-PDMS Piezoresistive Composite
Abstract A low cost and highly mechanically flexible 8x8 pressure matrix sensor with dedicated electronics has been fabricated with an innovative metal-elastomer composite material. Under the action of a compressive stress the material exhibits a giant piezoresistive effect varying its electrical resistance of several orders of magnitude. This phenomenon can be tuned by changing the material composition parameters, directly modifying the sensitivity of the sensor. The micro casting fabrication technique, used for the preparation of self standing sheet of functional material, gives the possibility of easily fabricating complex-shaped structure suitable for integration on robot surface for tactile sensing. The sensor has been tested with a customized electronic circuit after an exhaustive characterization of the functional properties of the material
Lead-free piezoelectrics: V3+ to V5+ ion conversion promoting the performances of V-doped Zinc Oxide
Vanadium doped ZnO (VZO) thin films were grown by RF magnetron sputtering, starting from a ZnO:V
ceramic target. The crystal structure, chemical composition, electric and piezoelectric properties of
the films were investigated either on the as-grown thin films or after a post-deposition rapid thermal
annealing (RTA) treatment performed at 600 °C for different lengths of time (1 and 5 min) in an oxygen
atmosphere. Substitutional doping of Zn2+ with V3+ and V5+ ions strongly deteriorated the hexagonal
wurtzite ZnO structure of the as-grown thin films due to lattice distortion. The resulting slight
amorphization led to a poor piezoelectric response and higher resistivity. After the RTA treatment,
strong c-axis oriented VZO thin films were obtained, together with a partial conversion of the starting
V3+ ions into V5+. The improvement of the crystal structure and the stronger polarity of both V3+ â O
and V5+ â O chemical bonds, together with the corresponding easier rotation under the application of
an external electric field, positively affected the piezoelectric response and increased conductivity. This
was confirmed by closed-loop butterfly piezoelectric curves, by a maximum d33 piezoelectric coefficient
of 85 pm·Vâ1, and also by ferroelectric switching domains with a well-defined polarization hysteresis
curve, featuring a residual polarization of 12.5 ÎŒCâcmâ2
The shielding effect of phospholipidic bilayers on zinc oxide nanocrystals for biomedical applications
Zinc oxide nanocrystals (ZnO NCs), thanks to their unique properties, are receiving much attention for their use in nanomedicine, in particular for therapy against cancer [1]. To be efficiently employed as diagnostic and therapeutic (yet theranostic) tools [2], highly dispersed, stable and non-toxic nanoparticles are required. In the case of ZnO NCs, there is still a lack of knowledge about cytotoxicity mechanisms and stability in the biological context, as well as immunological response and haemocompatible features.
Most of these above-mentioned behaviours strongly depends on physico-chemical and surface properties of the nanoparticles. We thus propose a novel approach to stabilize the ZnO NCs in various biological media, focusing on NC aggregation and biodegradation as a function of the surface functionalization.
We synthesized bare ZnO NCs, amino-propyl functionalized ones, and lipid bilayer-shielded NCs, and we characterized their morphological, chemical and physical properties. The stability behavior of the three different samples was evaluated, comparing their biodegradation profiles in different media, i.e. organic solvents, water, and different simulated and biological fluids. The studies aim to investigate how the particle surface functionalizations, and thus chemistry and charge, could influence their hydrodynamic size, zeta potential and consequent aggregation and degradation in the different solvents. We demonstrated that bare and amino-functionalized ZnO NCs strongly and rapidly aggregate when suspended in both simulated and biological media. Long-term biodegradation analysis showed small dissolution into potentially cytotoxic Zn-cations, also slightly affecting their crystalline structure. In contrast, high colloidal stability and integrity was retained for lipid-shielded ZnO NCs in all media, rendering them the ideal candidates for further theranostic applications [3].
[1] P. Zhu, Z. Weng, X. Li, X. Liu, S. Wu Adv. Mater. Interfaces 3 (2016) 1500494.
[2] E. Lim, T. Kim, S. Paik, S. Haam, Y. Huh, and K. Lee, Chem. Rev. 115 (2015) 327â394.
[3] B. Dumontel, M. Canta, H. Engelke, A. Chiodoni, L. Racca, A. Ancona, T. Limongi, G. Canavese and V. Cauda, J. Mater. Chem. B, under review
The support from ERC Starting Grant â Project N. 678151 âTrojananohorseâ and Compagnia di Sanpaolo are gratefully acknowledged
Impact of chemotherapy dose-density on radiotherapy dose-intensity after breast conserving surgery
n/
Biomimetic Non-Immunogenic Nanoassembly for the Antitumor Therapy
Nanoassembly (1) for inducing apoptosis in cancer cells comprising: a core (2) comprising at least a nanoparticle of a nano structured and semiconductor metal oxide, said nanoparticle being monocrystalline or polycrystalline; a shell (3) formed by a double phospholipid layer and proteins derived from an extracellular biovesicole chosen between an exosome, an ectosome, a connectosome, an oncosome and an apoptotic body, and an oncosome, said core (2) being enclosed inside said shell (3); and a plurality of targeting molecules (4, 4', 4") of said cancer cells, preferably monoclonal antibodies (4, 4', 4"), said molecules (4, 4', 4") being anchored to the external surface of said biovesicole
Focalization performance study of a novel bulk acoustic wave device
This work illustrates focalization performances of a siliconâbased bulk acoustic wave device applied for the separation of specimens owing to micrometric dimensions. Samples are separated in the microfluidic channel by the presence of an acoustic field, which focalizes particles or cells according to their mechanical properties compared to the surrounded medium ones. Design and fabrication processes are reported, followed by focalization performance tests conducted either with synthetic particles or cells. High focalization performances occurred at different microparticle concentrations. In addition, preliminary tests carried out with HLâ60 cells highlighted an optimal separation performance at a high flow rate and when cells are mixed with micro and nanoparticles without affecting device focalization capabilities. These encouraging results showed how this bulk acoustic wave device could be exploited to develop a diagnostic tool for early diagnosis or some specific target therapies by separating different kinds of cells or biomarkers possessing different mechanical properties such as shapes, sizes and densities
Enhanced Biostability and Cellular Uptake of Zinc Oxide Nanocrystals Shielded with Phospholipid Bilayer
The widespread use of ZnO nanomaterials for biomedical applications, including therapeutic drug delivery or stimuli-responsive activation, as well as imaging, imposes a careful control over the colloidal stability and long-term behaviour of ZnO in biological media. Moreover, the effect of ZnO nanostructures on living cells, in particular cancer cells, is still under debate. This paper discusses the role of surface chemistry and charge of zinc oxide nanocrystals, of around 15 nm in size, which influence their behaviour in biological fluids and effect on cancer cells. In particular, we address this problem by modifying the surface of pristine ZnO nanocrystals (NCs), rich of hydroxyl groups, with positively charged amino-propyl chains or, more innovatively, by self-assembling a double-lipidic membrane, shielding the ZnO NCs. Our findings show that the prolonged immersion in simulated human plasma and in the cell culture medium leads to highly colloidally dispersed ZnO NCs only when coated by the lipidic bilayer. In contrast, the pristine and amine-functionalized NCs form huge aggregates after already one hour of immersion. Partial dissolution of these two samples into potentially cytotoxic Zn2+ cations takes place, together with the precipitation of phosphate and carbonate salts on the NCsâ surface. When exposed to living HeLa cancer cells, higher amounts of lipid-shielded ZnO NCs are internalized with respect to the other samples, thus showing a reduced cytotoxicity, based on the same amount of internalized NCs. These results pave the way for the development of novel theranostic platforms based on ZnO NCs. The new formulation of ZnO shielded with a lipid-bilayer will prevent strong aggregation and premature degradation into toxic by-products, and promote a highly efficient cell uptake for further therapeutic or diagnostic functions
Ultrasound-assisted water oxidation: unveiling the role of piezoelectric metal-oxide sonocatalysts for cancer treatment
Ultrasound radiation has been widely used in biomedical application for both diagnosis and therapy. Metal oxides nanoparticles (NPs), like ZnO or TiO2 NPs, have been widely demonstrated to act as excellent sonocatalysts and significantly enhance cavitation at their surface, making them optimal for sonodynamic cancer therapy. These NPs often possess semiconductive and piezoelectric properties that contribute to the complex phenomena occurring at the water-oxide interface during sonostimulation.
Despite the great potential in applied sonocatalysis and water splitting, the complex mechanism that governs the phenomenon is still a research subject. This work investigates the role of piezoelectric ZnO micro- and nano-particles in ultrasound-assisted water oxidation. Three metal oxides presenting fundamental electronic and mechanical differences are evaluated in terms of ultrasound-triggered reactive oxygen species generation in aqueous media: electromechanically inert
SiO2 NPs, semiconducting TiO2 NPs, piezoelectric and semiconducting ZnO micro- and nanoparticles with different surface areas and sizes. The presence of silver ions in the aqueous solution was further considered to impart a potential electron scavenging effects and better evaluate the oxygen generation performances of the different structures. Following sonoirradiation, the particles are optically and chemically analyzed to study the effect of sonostimulation at their surface. The production of gaseous molecular oxygen is measured, revealing the potential of piezoelectric particles to generate oxygen under hypoxic conditions typical of some cancer environments. Finally, the best candidates, i.e. ZnO nano and micro particles, were tested on osteosarcoma and glioblastoma cell lines to demonstrate their potential for cancer treatment
- âŠ