708 research outputs found

    Security of "Counterfactual Quantum Cryptography"

    Full text link
    Recently, a "counterfactual" quantum key distribution scheme was proposed by Tae-Gon Noh [1]. In this scheme, two legitimate distant peers may share secret keys even when the information carriers are not traveled in the quantum channel. We find that this protocol is equivalent to an entanglement distillation protocol (EDP). According to this equivalence, a strict security proof and the asymptotic key bit rate are both obtained when perfect single photon source is applied and Trojan-horse attack can be detected. We also find that the security of this scheme is deeply related with not only the bit error rate but also the yields of photons. And our security proof may shed light on security of other two-way protocols.Comment: 5 pages, 1 figur

    Device and semi-device independent random numbers based on non-inequality paradox

    Full text link
    In this work, we propose device independent true random numbers generation protocols based on non-inequality paradoxes such as Hardy's and Cabello's non-locality argument. The efficiency of generating randomness in our protocols are far better than any other proposed protocols certified by CHSH inequality or other non-locality test involving inequalities. Thus, highlighting non-inequality paradox as an important resource for device independent quantum information processing in particular generating true randomness. As a byproduct, we find that the non-local bound of the Cabello's argument with arbitrary dimension is the same as the one achieved in the qubits system. More interestingly, we propose a new dimension witness paradox based on the Cabello's argument, which can be used for constructing semi-device-independent true random numbers generation protocol

    Detection efficiency and noise in semi-device independent randomness extraction protocol

    Full text link
    In this paper, we analyze several critical issues in semi-device independent quantum information processing protocol. In practical experimental realization randomness generation in that scenario is possible only if the efficiency of the detectors used is above a certain threshold. Our analysis shows that the critical detection efficiency is 0.7071 in the symmetric setup, while in the asymmetric setup if one of the bases has perfect critical detection efficiency then the other one can be arbitrarily close to 0. We also analyze the semi-device independent random number generation efficiency based on different averages of guessing probability. To generate more randomness, the proper averaging method should be applied. Its choice depends on the value of a certain dimension witness. More importantly, the general analytical relationship between the maximal average guessing probability and dimension witness is given

    Security of quantum key distribution with state-dependent imperfections

    Full text link
    In practical quantum key distribution (QKD) system, the state preparation and measurement are imperfect comparing with the ideal BB84 protocol, which are always state-dependent in practical realizations. If the state-dependent imperfections can not be regarded as an unitary transformation, it should not be considered as part of quantum channel noise introduced by the eavesdropper, the commonly used secret key rate formula GLLP can not be applied correspondingly. In this paper, the unconditional security of quantum key distribution with state-dependent imperfection has been analyzed by estimating the upper bound of the phase error rate about the quantum channel

    Security of practical phase-coding quantum key distribution

    Full text link
    Security proof of practical quantum key distribution (QKD) has attracted a lot of attentions in recent years. Most of real-life QKD implementations are based on phase-coding BB84 protocol, which usually uses Unbalanced Mach-Zehnder Interferometer (UMZI) as the information coder and decoder. However, the long arm and short arm of UMZI will introduce different loss in practical experimental realizations, the state emitted by Alice's side is nolonger standard BB84 states. In this paper, we will give a security analysis in this situation. Counterintuitively, active compensation for this different loss will only lower the secret key bit rate.Comment: 4 pages, 3 figures

    Three-observer classical dimension witness violation with weak measurement

    Full text link
    Based on weak measurement technology, we propose the first three-observer dimension witness protocol in a prepare-and-measure setup. By applying the dimension witness inequality based on the quantum random access code and the nonlinear determinant value, we demonstrate that double classical dimension witness violation is achievable if we choose appropriate weak measurement parameters. Analysis of the results will shed new light on the interplay between the multi-observer quantum dimension witness and the weak measurement technology, which can also be applied in the generation of semi-device-independent quantum random numbers and quantum key distribution protocols

    Quantum key distribution based on quantum dimension and independent devices

    Full text link
    In this paper, we propose a quantum key distribution (QKD) protocol based on only a two-dimensional Hilbert space encoding a quantum system and independent devices between the equipment for state preparation and measurement. Our protocol is inspired by the fully device-independent quantum key distribution (FDI-QKD) protocol and the measurement-device-independent quantum key distribution (MDI-QKD) protocol. Our protocol only requires the state to be prepared in the two dimensional Hilbert space, which weakens the state preparation assumption in the original MDI-QKD protocol. More interestingly, our protocol can overcome the detection loophole problem in the FDI-QKD protocol, which greatly limits the application of FDI-QKD. Hence our protocol can be implemented with practical optical components

    Quantum Hacking on Continuous-Variable Quantum Key Distribution System using a Wavelength Attack

    Full text link
    The security proofs of continuous-variable quantum key distribution are based on the assumptions that the eavesdropper can neither act on the local oscillator nor control Bob's beam splitter. These assumptions may be invalid in practice due to potential imperfections in the implementations of such protocols. In this paper, we consider the problem of transmitting the local oscillator in a public channel and propose a wavelength attack which can allow the eavesdropper to control the intensity transmission of Bob's beam splitter by switching the wavelength of the input light. Specifically we target continuous-variable quantum key distribution systems that use the heterodyne detection protocol using either direct or reverse reconciliation. Our attack is proved to be feasible and renders all of the final key shared between the legitimate parties insecure, even if they have monitored the intensity of the local oscillator. To prevent our attack on commercial systems, a simple wavelength filter should be added before performing the monitoring detection.Comment: 9 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1206.655

    Topological phase, supercritical point and emergent phenomena in extended Z3\mathbb{Z}_3 parafermion chain

    Full text link
    Topological orders and associated topological protected excitations satisfying non-Abelian statistics have been widely explored in various platforms. The Z3\mathbb{Z}_3 parafermions are regarded as the most natural generation of the Majorana fermions to realize these topological orders. Here we investigate the topological phase and emergent Z2\mathbb{Z}_2 spin phases in an extended parafermion chain. This model exhibits rich variety of phases, including not only topological ferromagnetic phase, which supports non-Abelian anyon excitation, but also spin-fluid, dimer and chiral phases from the emergent Z2\mathbb{Z}_2 spin model. We generalize the measurement tools in Z2\mathbb{Z}_2 spin models to fully characterize these phases in the extended parafermion model and map out the corresponding phase diagram. Surprisingly, we find that all the phase boundaries finally merge to a single supercritical point. In regarding of the rather generality of emergent phenomena in parafermion models, this approach opens a wide range of intriguing applications in investigating the exotic phases in other parafermion models.Comment: 6 pages, 4 figure

    Proof-of-principle experiment of reference-frame-independent quantum key distribution with phase coding

    Full text link
    We have demonstrated a proof-of-principle experiment of reference-frame-independent phase coding quantum key distribution (RFI-QKD) over an 80-km optical fiber. After considering the finite-key bound, we still achieve a distance of 50 km. In this scenario, the phases of the basis states are related by a slowly time-varying transformation. Furthermore, we developed and realized a new decoy state method for RFI-QKD systems with weak coherent sources to counteract the photon-number-splitting attack. With the help of a reference-frame-independent protocol and a Michelson interferometer with Faraday rotator mirrors, our system is rendered immune to the slow phase changes of the interferometer and the polarization disturbances of the channel, making the procedure very robust.Comment: 19 page
    corecore